variation of the nazarov sodin
play

Variation of the Nazarov-Sodin constant for random plane waves and - PowerPoint PPT Presentation

Variation of the Nazarov-Sodin constant for random plane waves and arithmetic random waves Par Kurlberg (KTH Stockholm) Igor Wigman, KCL Random Waves in Oxford Oxford, June 19, 2018 1. Motivation & Background General Setup (, )


  1. Variation of the Nazarov-Sodin constant for random plane waves and arithmetic random waves Par Kurlberg (KTH Stockholm) Igor Wigman, KCL Random Waves in Oxford Oxford, June 19, 2018

  2. 1. Motivation & Background

  3. General Setup (𝑁, 𝑕) – Compact smooth surface (can ο‚— generalize higher dimensions) Ξ” Laplace-Beltrami on M ο‚— Eigenfunctions: (boundary condition) ο‚— πœ‡ π‘˜ β‰₯ 0 Ξ”πœ’ π‘˜ + πœ‡ π‘˜ πœ’ π‘˜ = 0 ο‚— Orthonormal basis of L 2 (M,dVol), πœ‡ π‘˜ β†’ ∞

  4. Nodal components & domains βˆ’1 (0) ο‚— Nodal set: π‘Ž πœ’ π‘˜ = πœ’ π‘˜ ο‚— Nodal components: Connected components βˆ’1 (0) . of πœ’ π‘˜ ο‚— Nodal domains: Connected components of βˆ’1 (0) smooth 𝑁 βˆ– πœ’ π‘˜ ο‚— Nodal count: How many components (domains)?

  5. Interesting Questions – non-local Nodal count (Nazarov-Sodin `09,`12, `15, ο‚— Kurlberg-W `14, `17) ο‚— T opology, nesting,geometry(Sarnak-W, Beliaev-W) ο‚— Local: π‘€π‘“π‘œ 𝐡βˆͺ𝐢 𝑔 = π‘€π‘“π‘œ 𝐡 𝑔 + π‘€π‘“π‘œ 𝐢 𝑔 𝐡 ∩ 𝐢 = βˆ… ο‚— Semilocality: β€œMost” of the nodal domains of 𝑆 diameter πœ‡ , R>>0. ο‚— Approximate locally

  6. Nodal count (deterministic) ο‚— Nodal Count. Courant: 𝑂 πœ’ π‘˜ ≀ π‘˜ 𝑂 πœ’ π‘˜ ο‚— Pleijel: limsup ≀ 0.691 … π‘˜ π‘˜β†’βˆž ο‚— Constant improved by 3 βˆ™ 10 βˆ’9 (Bourgain) ο‚— No lower bound 𝑂 πœ’ π‘˜ β‰₯ 2 Nodal picture for the square, arbitrarily high energy. A. Stern’s thesis, Gottingen, 1925. Courtesy of P. Sarnak.

  7. Berry’s Random Wave Model ο‚— M chaotic. As πœ‡ β†’ ∞, πœ’ π‘˜ β€œbehave randomly” wavenumber πœ‡ monochromatic wave ℝ 2 1 𝐾 𝑓 𝑗( πœ‡ 𝑦,𝜘 π‘˜ +πœ” π‘˜ ) 𝐾 𝔒𝑓 π‘˜=1 𝑣 πœ‡ (𝑦) = ο‚— Scale invariant, assume 𝑣 = 𝑣 1 ο‚— Centered Gaussian, covariance E[𝑣(𝑦) βˆ™ 𝑣(𝑧)] = 𝐾 0 (|𝑦 βˆ’ 𝑧|) ο‚— Spectral measure – arc length on unit circle

  8. 2. Random Band Limited Functions

  9. Random Band-Limited Functions ο‚— Fix M – smooth n-manifold, 0 ≀ 𝛽 ≀ 1 πœ‡ x = π›½πœ‡β‰€πœ‡ π‘˜ β‰€πœ‡ 𝑏 π‘˜ πœ’ π‘˜ (𝑦) , 𝑏 π‘˜ - N(0,1) i.i.d. 𝑔 ( 𝛽 = 1 summation over πœ‡ βˆ’ 𝑝 πœ‡ ≀ πœ‡ π‘˜ ≀ πœ‡ ) ο‚— Covariance function 𝔽 𝑔 πœ‡ 𝑦 𝑔 πœ‡ 𝑧 = πœ’ π‘˜ (𝑦)πœ’ π‘˜ (𝑧) i.e. the spectral projector.

  10. Example 1. Random Spherical harmonics ο‚— 𝛽 = 1, 𝑁 = 𝒯 2 , 2d sphere. ο‚— 𝔽 π‘ˆ π‘š x βˆ™ π‘ˆ π‘š y = 𝑄 π‘š cos(𝑒 𝑦, 𝑧 ) . ο‚— 𝑄 π‘š cos(𝑒) β‰ˆ 𝐾 0 π‘šπ‘’ Legendre fast uniform ο‚— Scales Berry’s RWM RWM Random spherical harmonics A. Barnett

  11. 𝛽 =1 vs 𝛽 =0 (Alex Barnett) 𝛽 =1 𝛽 =0 Random spherical harmonics β€œReal Fubini- Study”

  12. Example 2. T oral eigenfunctions. ℝ 2 ο‚— π•Œ = 𝑁 = β„€ 2 π‘œ 𝑦 = 𝜈 2 =π‘œ 𝑏 𝜈 βˆ™ 𝑓 ο‚— 𝑔 𝑦, 𝜈 𝑏 𝜈 standard Gaussian i.i.d. (save to 𝑏 βˆ’πœˆ = 𝑏 𝜈 ) β€œ arithmetic random waves ” 𝜈 2 = π‘œ ο‚— Summation over 𝜈 ∈ β„€ 2 : lattice points on radius π‘œ circle

  13. More general: limiting ensembles ο‚— Natural scaling around any point of M. ο‚— Scaling for covariance (values & derivatives) (classical Hormander, Lax) 𝔽 𝑔 πœ‡ x βˆ™ 𝑔 πœ‡ y β‰ˆ 𝐿 𝛽 πœ‡ βˆ™ 𝑒 𝑦, 𝑧 ο‚— 𝐿 𝛽 π‘₯ = 𝐿 𝛽 π‘₯ = 𝛽≀ π‘₯ ≀1 𝑓 π‘₯, 𝜊 π‘’πœŠ ο‚— Canzani-Hanin `16 𝛽 = 1 thin window. ο‚— Define 𝑕 ∞ on ℝ 2 , β€œclean” covariance 𝔽[𝑕 ∞ 𝑨 βˆ™ 𝑕 ∞ 𝑨′ ] = 𝐿 𝛽 𝑨 βˆ’ 𝑨′

  14. Limiting ensembles (cont.) ο‚— 𝔽[𝑕 ∞ 𝑨 βˆ™ 𝑕 ∞ 𝑨′ ] = 𝐿 𝛽 𝑨 βˆ’ 𝑨′ ο‚— 𝑕 ∞ scaling limit 𝑔 πœ‡ (everywhere) ο‚— 𝑕 ∞ depends on 𝛽 , not on M, x (universality) ο‚— Spectral measure 𝛽 1 ο‚— Relevant: nodal structures of 𝑕 ∞ restricted on ball 𝐢 𝑆 , 𝑆 β†’ ∞. ο‚— E.g. nodal count of domains lying in 𝐢 𝑆 .

  15. 3. Nazarov-Sodin Constant

  16. Scale invariant (Euclidean) case ο‚— 𝐺: ℝ 2 β†’ ℝ stationary Gaussian field ο‚— 𝜍 spectral measure of 𝐺 ο‚— 𝑂(𝐺; 𝑆) is the number of connected components (domains) of 𝐺 inside 𝐢(𝑆) ο‚— Assuming: 1. 𝐺 ergodic ( 𝜍 has no atoms) 2. 𝐺 smooth. 3. Non-degeneracy ο‚— Nazarov-Sodin (`12,`15): 𝑑 = 𝑑 𝑂𝑇 (𝜍) β‰₯ 0 𝐹[𝑂 𝐺; 𝑆 ] = 𝑑 βˆ™ 𝑆 2 + 𝑝 π‘†β†’βˆž (𝑆 2 ) ο‚— β€œUsually” 𝑑 > 0 (support of 𝜍 )

  17. Nodal count band-limited functions = 𝑑 βˆ™ 𝑆 2 + 𝑝 π‘†β†’βˆž (𝑆 2 ) ο‚— 𝑑 = 𝑑 𝑂𝑇 (𝜍) , E 𝑂 𝐺; 𝑆 ο‚— Stronger convergence in mean (ergodicity) 𝑂 𝐺;𝑆 βˆ’π‘‘βˆ™π‘† 2 E β†’ 0 𝑆 2 ο‚— Band-limited functions 𝑑 = 𝑑 𝑂𝑇 𝜍 𝛽 > 0 𝜍 𝛽 area measure annulus πœ‡ )]~𝑑 βˆ™ πœ‡ (NS `12,`15) ο‚— E[𝑂(𝑔 𝛽 1 ο‚— Convergence in mean

  18. Random spherical harmonics ο‚— 𝑣 = Plane monochromatic waves (RWM) ο‚— 𝐹[𝑂 𝑣; 𝑆 ]~𝑑 𝑆𝑋𝑁 βˆ™ 𝑆 2 , universal NS constant 2𝜌 > 0 percolation? π‘’πœ„ ο‚— 𝑑 𝑆𝑋𝑁 = 𝑑 𝑂𝑇 ο‚— 𝐹 𝑂(π‘ˆ π‘š ) ~𝑑 𝑆𝑋𝑁 βˆ™ π‘š 2 (NS `09) ο‚— Convergence in mean 1 ο‚— Exponential probability concentration

  19. 4. Variation on Nazarov-Sodin consant

  20. Generalise NS constant ο‚— Restrict to 𝜍 supported on the unit ball 𝒬 (spectral moments), includes band limited case ο‚— Proposition 1(Kurlberg-W): c = 𝑑 𝑂𝑇 (𝜍) , E[𝑂 𝐺; 𝑆 ] = 𝑑 βˆ™ 𝑆 2 + 𝑃(𝑆) , 𝜍 ∈ 𝒬 arbitrary, absolute constant (uniform) ο‚— 𝑑 𝑂𝑇 (𝜍) bounded (e.g. critical points Kac-Rice) ο‚— No convergence in mean. Can construct 𝑂 𝐺;𝑆 βˆ’π‘‘βˆ™π‘† 2 examples E doesn’t vanish 𝑆 2 ο‚— Example: 𝜍 atomic supported at 0. 𝐺 ≑ π‘‘π‘π‘œπ‘‘π‘’ , Gaussian 𝑂 𝐺; 𝑆 ≑ 0 , β‡’ 𝑑 𝑂𝑇 𝜍 = 0.

  21. Variation of NS constant ο‚— Proposition 2 (Kurlberg-W): 𝑂 𝐺;𝑆 βˆ’π‘‘βˆ™π‘† 2 exists 𝑒 𝑂𝑇 𝜍 ≔ lim π‘†β†’βˆž E 𝑆 2 (β€œNS discrepancy functional”) non -uniform, discontinous ο‚— Theorem 1 (Kurlberg-W): 𝑑 𝑂𝑇 𝜍 : 𝒬 β†’ ℝ β‰₯0 is continuous (weak* topology on 𝒬 ). ο‚— Corollary: 𝑑 𝑂𝑇 𝜍 attains an interval [0, 𝑑 0 ] ( 𝒬 is essential) ο‚— Q: Is it true that 𝑑 = 𝑑 𝑆𝑋𝑁 , uniquely ?

  22. 5. Toral Eigenfunctions

  23. Example 2. T oral eigenfunctions. ℝ 2 ο‚— π•Œ = 𝑁 = β„€ 2 π‘œ 𝑦 = 𝜈 2 =π‘œ 𝑏 𝜈 βˆ™ 𝑓 ο‚— 𝑔 𝑦, 𝜈 𝑏 𝜈 standard Gaussian i.i.d. (save to 𝑏 βˆ’πœˆ = 𝑏 𝜈 ) β€œ arithmetic random waves ” 𝜈 2 = π‘œ ο‚— Summation over 𝜈 ∈ β„€ 2 : lattice points on radius π‘œ circle π‘œ 𝑦 ) nodal count ο‚— 𝑂(𝑔

  24. On the 2 squares problem 𝑏, 𝑐 πœ—β„€ 2 : 𝑏 2 + 𝑐 2 = π‘œ ο‚— 𝑠 2 π‘œ = # ο‚— On average 𝑠 2 π‘œ ~c βˆ™ log(π‘œ) (E. Landau) Equidistributed Exceptional β€œ Cilleruelo ” generic 𝑠 2 (n) β†’ ∞ 1 1 ο‚— Partial classification (P . Kurlberg-IW `15)

  25. Some pics π‘œ = 1105 32 directions π‘œ = 9676418088513347624474653 256 directions Fragment, domains long and narrow

  26. On the 2 squares problem 1 𝑠 2 (π‘œ) 𝜈 2 =π‘œ πœ€ 𝜈/ π‘œ probability 𝒯 1 ο‚— 𝜐 π‘œ = (spectral measure) π‘’πœ„ ο‚— Equidistributed ( 𝜐 π‘œ π‘˜ β‡’ 𝜐 ) 𝜐 π‘œ π‘˜ β‡’ 2𝜌 ο‚— Angular distribution β†­ Nodal structure Local: Krishnapur-Kurlberg-W `13, Rudnick-W `14, Rossi-W `17 ο‚— Nonlocal: N(𝑔 π‘œ 𝑦 ) – total nodal count Nazarov-Sodin `12,`15+Kurlberg-W `14,17

  27. T oral eigenfunctions arithmetic π‘œ 𝑦 = 𝜈 2 =π‘œ 𝑏 𝜈 βˆ™ 𝑓 𝑦, 𝜈 ο‚— 𝑔 random waves 1 𝑠 2 (π‘œ) 𝜈 2 =π‘œ πœ€ 𝜈/ π‘œ on 𝑇 1 ο‚— 𝜐 π‘œ = ο‚— Apply N-S: if 𝜐 π‘œ β‡’ 𝜐 then 𝑑 = 𝑑 𝑂𝑇 𝜐 (generalised) 𝐹 𝑂(𝑔 π‘œ 𝑦 ) = 𝑑 βˆ™ π‘œ + 𝑝 π‘œ 𝑂 𝑔 π‘œ 𝑦 βˆ’π‘‘ 𝑆𝑋𝑁 ο‚— Generic 𝐹 β†’ 0 π‘œ ο‚— Exponential concentration (Y. Rozenshein `15)

  28. T oral eigenfunctions (cont.) arithmetic π‘œ 𝑦 = 𝜈 2 =π‘œ 𝑏 𝜈 βˆ™ 𝑓 𝑦, 𝜈 ο‚— 𝑔 random waves 1 𝑠 2 (π‘œ) 𝜈 2 =π‘œ πœ€ 𝜈/ π‘œ on 𝑇 1 ο‚— 𝜐 π‘œ = ο‚— Theorem 2 (Kurlberg-W): 1. Uniformly 𝐹 𝑂(𝑔 π‘œ 𝑦 ) = 𝑑 𝑂𝑇 (𝜐 π‘œ ) βˆ™ π‘œ + 𝑃 π‘œ 2. 𝑑 𝑂𝑇 𝜐 = 0 iff 𝜐 is Cilleruelo or its tilt ( 𝜐 restricted, in particular by symmetries)

  29. T oral eigenfunctions (cont.) ο‚— 𝑑 𝑂𝑇 𝜐 = 0 iff 𝜐 is Cilleruelo or its tilt (restricted) ο‚— 𝑑 𝑂𝑇 𝜐 attains an interval 0, 𝑑 1 . ο‚— Q.: Is it true that 𝑑 1 = 𝑑 0 = 𝑑 𝑆𝑋𝑁 uniquely? ο‚— Q.: For Cilleruelo: 𝐹 𝑂(𝑔 π‘œ 𝑦 ) - ? π‘œ 𝑦 ) β†’ ∞ - ? 𝐹 𝑂(𝑔 π‘œ - ? 𝐹 𝑂(𝑔 π‘œ 𝑦 ) ≫ ο‚— Meanwhile full classification 𝑑 𝑂𝑇 𝜍 = 0 (Beliaev-McAuley-Muirhead). Same for 𝑒 𝑂𝑇 𝜍 ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend