yuki kimura tohoku univ katsuo tsukamoto tohoku univ
play

Yuki Kimura Tohoku Univ. - PowerPoint PPT Presentation

Yuki Kimura Tohoku Univ. Katsuo Tsukamoto Tohoku Univ. Hitoshi Miura Tohoku Univ. Takao Maki Olympus Corp. (7 ) GFWS/ CPS


  1. 均質核形成によるダスト生成実験と 古典的核形成論 Yuki Kimura Tohoku Univ. Katsuo Tsukamoto Tohoku Univ. Hitoshi Miura Tohoku Univ. Takao Maki Olympus Corp. (7 7 ) GFWS/ 銀河のダスト研究会、神戸 CPS 、 Sep. 2, 2010 .

  2. 均質核形成によるダスト生成実 験と古典的核形成論 Why nucleation? • Number • Morphology • Habit • Size Evolved Star • Size distribution Not only industrially,  Nucleation is also important to know the formation process of Cosmic dust particles. We need understand Nucleation! Planetary Nebula

  3. 99% gas, but 1% solid nm sized particles Building block of Planetary system & Life Star Form ing Region Planetary Nebula SN Rem nant AGB star Planetary System Molecular Cloud Credit of all photos: NASA/ JPL/ Space Science Institute

  4. 99% gas, but 1% solid nm sized particles Building block of Planetary system & Life Molster et al. 2002 500 nm 惑星系 500 nm 500 nm 100 nm Nozaw a, et al., 2 0 0 9 . 200 nm 200 nm 惑星状星雲 500 nm 惑星系 500 nm

  5. Condensation temperature of major elements as a function of C/ O ratio. ガスの温度が下がるにつれて 高融点物質から順に凝縮する。 Cor. Corundum, コランダム , Al 2 O 3 Per. Periclase, ペリクレイス , MgO Gehl. Gehlenite, ゲーレナイト , Ca 2 Al(AlSi)O 7 Sp. Spinel, スピネル , MgAl 2 O 4 For. Forsterite, フォルステライト , (Fe,Mg) 2 SiO 4 Fe Iron, 鉄 , Fe Lodders et al. Meteoritics 30 (1995) 661. Constraints on the formation conditions and environment have been calculated. (Lodders & Fegley 1995; Sharp & Wasserburg 1995; Chigai et al. 1999, 2002) C/ O abundance ratio Condensation sequence Total gas pressure Sizes of core-mantle Gas outflow velocity Stellar mass loss rate Croat et al., 2004 LPS, 1353.

  6. Smoke generator Nickname is now wanted! Nickname is now wanted!

  7. Smoke generator + Interferometer

  8. Smoke generator + Interferometer 100 nm 50 nm 100 nm 200 nm

  9. objective lens, pinhole, collimate lens 632.8 nm 900 mm He/ Ne laser camera ND filter camera mirror 600 mm band-pass filter beam splitter ND filter pyrometer lens polarizer mirror mirror IR filter dichroic mirror

  10. objective lens, pinhole, collimate lens 632.8 nm 900 mm He/ Ne laser camera ND filter camera mirror 600 mm band-pass filter beam splitter ND filter pyrometer lens polarizer mirror mirror IR filter dichroic mirror

  11. objective lens, pinhole, collimate lens 632.8 nm 900 mm He/ Ne laser camera ND filter camera mirror 600 mm band-pass filter beam splitter ND filter pyrometer lens polarizer 70.0 mm W wire 0.3 mm  mirror mirror IR filter dichroic mirror

  12. Interferogram Temperature: 298 K (25 o C) Temperature: 323 K (50 o C) Gas: Ar 1 × 10 4 Pa Gas: Ar 1 × 10 4 Pa Heating Refractive index: 1.00002714 Refractive index: 1.00002503 Difference of refractive W wire 0.3 mm  index is only 2 × 1 0 - 6 . 3 mm

  13. Interferogram Temperature: 298 K (25 o C) Temperature: 323 K (50 o C) Gas: Ar 1 × 10 4 Pa Gas: Ar 1 × 10 4 Pa Heating Refractive index: 1.00002714 Refractive index: 1.00002503 W wire 0.3 mm  3 mm 3 mm We can detect only a difference of 10 -6 -10 -7 orders!! pyrometer Thermo couple 0.1 mm Φ thermocouple

  14. Interferogram Temperature: 298 K (25 o C) Temperature : 298 K (25 o C) Gas: Ar 1 × 10 4 Pa Gas : Ar 9 × 10 3 Pa, O 2 1 × 10 3 Pa Oxygen Refractive index: 1.00002714 Refractive index: 1.00002703 3 mm 3 mm Heating RT 1570 K Only Temperature Temperature & concentration Temperature information is subtracted by oxygen free experiment.

  15. In-situ observation using interferometer 0 -5 5 mm A tungsten wire (0.3 mm  and 70 mm depth) is heated in a mixture gas of Ar (9 × 10 3 Pa) and O 2 (1 × 10 3 Pa). 1 st , 2 nd and 3 rd fringes correspond to 320, 500 and 1150 K, respectively.

  16. In-situ observation using interferometer 1570 K  WO 3 particles are condensed 700 K 1150 K lower than equilibrium 870 K T due to homogeneous 500 K nucleation! Evaporation Source P e = 1.3 × 10 3 Pa at 1570 K Position of Smoke P e = ~ 10 -9 Pa at 870 K  Degree of supersaturation is at least 10 11 !!  Nucleation occurs below the evaporation source.

  17. Convection current and Smoke 10 4 Pa WO 3 vapor Diffusion velocity: 95 cm s -1 1570 K 150 ~ 100 cm s -1 Flow velocity (cm s -1 ) 100 Convection current He gas  The heated source generated a high- T= 1873 K 50 temperature atmosphere and convection currents (~ 100 cm s -1 ).  Evaporated WO 3 vapor diffuses in 0 26 uniformly with 9.79 cm 2 s -1 . 1.3 13 39 6.5 Gas pressure (10 3 Pa) Yatsuya et al. J. Cry. Growth 70 (1984) 536.

  18. Convection current and Smoke WO 3 vapor Diffusion velocity: 95 cm s -1 Convection current of ambient gas: ~ 100 cm s -1  Since there is a strong convection current, rising vapor is accelerated and down flow is restrained.  As the result, concentration of WO 3 vapor is getting higher below the evaporation source.

  19. Convection current and Smoke WO 3 vapor Diffusion velocity: 95 cm s -1 Convection current of ambient gas: ~ 100 cm s -1  Finally, nucleation occurs at the highest supersaturation environment between convection current of ambient gas and evaporated WO 3 vapor.  Nuclei follow the convection current and grow to make nanoparticles in smoke.

  20. Convection current and Smoke WO 3 vapor Diffusion velocity: 95 cm s -1 Convection current of ambient gas: ~ 100 cm s -1  Finally, nucleation occurs at the highest supersaturation environment between convection current of ambient gas and evaporated WO 3 vapor.  Nuclei follow the convection current and grow to make nanoparticles in smoke.  W e can derive a lot of inform ation from I nterferogram .

  21. Condensation temperature of major elements as a function of C/ O ratio. ガスの温度が下がるにつれて 高融点物質から順に凝縮する。 Cor. Corundum, コランダム , Al 2 O 3 Per. Periclase, ペリクレイス , MgO Gehl. Gehlenite, ゲーレナイト , Ca 2 Al(AlSi)O 7 Sp. Spinel, スピネル , MgAl 2 O 4 For. Forsterite, フォルステライト , (Fe,Mg) 2 SiO 4 Fe Iron, 鉄 , Fe Lodders et al. Meteoritics 30 (1995) 661. Constraints on the formation conditions and environment have been calculated. (Lodders & Fegley 1995; Sharp & Wasserburg 1995; Chigai et al. 1999, 2002) C/ O abundance ratio Condensation sequence Total gas pressure Sizes of core-mantle Gas outflow velocity Stellar mass loss rate Croat et al., 2004 LPS, 1353.

  22. Conclusion  Temperature and concentration can be measured in-situ during smoke experiment.  Condensation occurs under very high supercooling (  T= ~ 400-700K).  Nucleation takes place below evaporation source in smoke experiment.  Nucleation theory may be verified.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend