non simply laced quiver gauge theory from background
play

Non-simply-laced quiver gauge theory from -background Taro Kimura - PowerPoint PPT Presentation

Non-simply-laced quiver gauge theory from -background Taro Kimura Keio University Collaboration with V. Pestun (IH ES): [arXiv:1705.04410] See also [arXiv:1512.08533] [arXiv:1608.04651] T. Kimura


  1. Non-simply-laced quiver gauge theory from Ω -background Taro Kimura ♣ 木村 太 郎 Keio University ♦ 慶應 義 塾 大 学 Collaboration with V. Pestun (IH´ ES): [arXiv:1705.04410] See also [arXiv:1512.08533] [arXiv:1608.04651] T. Kimura (Keio U) August 2017 @ YITP 0 / 15

  2. Quiver gauge theory � Gauge theory with several gauge groups: G i i T. Kimura (Keio U) August 2017 @ YITP 1 / 15

  3. Quiver gauge theory � Gauge theory with several gauge groups: G i i Their interaction depicted by quiver diagram node: vector edge: bifund T. Kimura (Keio U) August 2017 @ YITP 1 / 15

  4. Quiver gauge theory � Gauge theory with several gauge groups: G i i Their interaction depicted by quiver diagram node: vector edge: bifund A 3 quiver D 4 quiver Analogy with Dynkin diagram T. Kimura (Keio U) August 2017 @ YITP 1 / 15

  5. Quiver gauge theory � Gauge theory with several gauge groups: G i i Their interaction depicted by quiver diagram node: vector edge: bifund � � A 3 quiver D 4 quiver Analogy with Dynkin diagram T. Kimura (Keio U) August 2017 @ YITP 1 / 15

  6. Non-simply-laced quiver BC 2 quiver: T. Kimura (Keio U) August 2017 @ YITP 2 / 15

  7. Non-simply-laced quiver BC 2 quiver: What’s the doubled arrow ? from long to short root � A 1 quiver: (2 bifunds; no “orientation”) T. Kimura (Keio U) August 2017 @ YITP 2 / 15

  8. Non-simply-laced quiver BC 2 quiver: What’s the doubled arrow ? from long to short root � A 1 quiver: (2 bifunds; no “orientation”) What’s the root length in gauge theory ? T. Kimura (Keio U) August 2017 @ YITP 2 / 15

  9. Key idea Quiver W-algebra Γ -quiver gauge theory W( Γ )-algebra [TK–Pestun] AGT: G -gauge theory W( G )-algebra where G = ABCDEFG (finite type) [Keller–Mekareeya–Song–Tachikawa] T. Kimura (Keio U) August 2017 @ YITP 3 / 15

  10. Key idea Quiver W-algebra Γ -quiver gauge theory W( Γ )-algebra [TK–Pestun] AGT: G -gauge theory W( G )-algebra where G = ABCDEFG (finite type) [Keller–Mekareeya–Song–Tachikawa] Non-simply-laced W-algebra to quiver gauge theory ( q -def of) W( Γ )-algebra for Γ � = ADE [Frenkel–Reshetikhin] Non-simply-laced Γ -quiver gauge theory T. Kimura (Keio U) August 2017 @ YITP 3 / 15

  11. Γ -quiver gauge theory on R 4 ǫ 1 , 2 × S 1 Ω -background (equivariant) parameters: ( q 1 , q 2 ) = ( e ǫ 1 , e ǫ 2 ) q -deformed W-algebra: W (Γ) q 1 ,q 2 Langlands dual W (Γ) q 1 ,q 2 = W ( L Γ) q 2 ,q 1 simply-laced: Γ = L Γ / non-simply-laced: Γ � = L Γ ( ǫ 1 , ǫ 2 ) are not equivalent for non-simply-laced quiver T. Kimura (Keio U) August 2017 @ YITP 4 / 15

  12. Non-simply-laced quiver gauge theory: definition “Root” parameter: d i ∈ Z > 0 for i ∈ { nodes in Γ } Γ is simply-laced, if d i = d 0 ∀ i . d ij := gcd( d i , d j ) Instanton counting (partition function) e : i → j : ( q 1 , q d ij Vec i : ( q 1 , q d i Hyp bf 2 ) & 2 ) SO(4) rotation charge depends on the node ( e ǫ 1 , e d i ǫ 2 ) ∈ U(1) × U(1) ⊂ SU(2) × SU(2) = SO(4) T. Kimura (Keio U) August 2017 @ YITP 5 / 15

  13. Partition function Configuration (instanton mod sp fixed pt): x i,α,k = q d i λ i,α,k q k − 1 X i = { x i,α,k } α ∈ [1 ,...,n i ] , k ∈ [1 ,..., ∞ ] ν i,α 2 1 � Gauge group: U( n i ) i ∈{ node } Partition: ( λ i,α ) = ( λ i,α, 1 , λ i,α, 2 , . . . ) Ω -background parameter: ( q 1 , q 2 ) = ( e ǫ 1 , e ǫ 2 ) Coulomb moduli: ν i,α = e a i,α T. Kimura (Keio U) August 2017 @ YITP 6 / 15

  14. Partition function Vector multiplet: � � � d i ( λ i,α,k − λ i,β,k ′ +1) q k − k ′ β ; q d i Z vec ν α ν − 1 = q 1 q i 2 1 2 ∞ ( α,k ) � =( β,k ′ ) � � − 1 d i ( λ i,α,k − λ i,β,k ′ +1) q k − k ′ β ; q d i ν α ν − 1 × q 2 1 2 ∞ � � � � − 1 � x x q 1 q d i x ′ ; q d i q d i x ′ ; q d i = 2 2 2 2 ∞ ∞ ( x,x ′ ) ∈X 2 i = Z vec ( X i ; q 1 , q d i 2 ) ( q 1 , q d i Replacement : ( q 1 , q 2 ) 2 ) for i ∈ { nodes } T. Kimura (Keio U) August 2017 @ YITP 7 / 15

  15. Partition function Bifund hyper: � � − 1 � � � x x e q 1 q d ij x ′ ; q d ij e q d ij x ′ ; q d ij Z bf µ − 1 µ − 1 e : i → j = 2 2 2 2 ∞ ∞ ( x,x ′ ) ∈X i ×X j d i /d ij − 1 � � − 1 � � � � x x e q − rd ij e q − rd ij q 1 q d i x ′ ; q d i q d i x ′ ; q d i µ − 1 µ − 1 = 2 2 2 2 2 2 ∞ ∞ r =0 ( x,x ′ ) ∈X i ×X j d i /d ij − 1 � Z bf ( µ e q rd ij ; X i , X j ; q 1 , q d i = 2 ) 2 r =0 Multiplication { µ e , µ e q d ij 2 , µ e q 2 d ij , . . . , µ e q d i − d ij Bifund mass: { µ e } } 2 2 � � { m e } { m e , m e + ǫ 2 d ij , . . . , m e + ǫ 2 ( d i − d ij ) } T. Kimura (Keio U) August 2017 @ YITP 8 / 15

  16. Example BC 2 quiver: Root parameter: ( d 1 , d 2 ) = (2 , 1) with d 12 = 1 Vector multiplet Z vec = Z vec ( X 1 ; q 1 , q 2 2 ) & Z vec = Z vec ( X 2 ; q 1 , q 2 ) 1 2 Bifund hypermultiplet Z bf 1 → 2 = Z bf ( µ ; X 1 , X 2 ; q 1 , q 2 2 ) Z bf ( µq 2 ; X 1 , X 2 ; q 1 , q 2 2 ) Z bf 2 → 1 = Z bf ( µ − 1 q 1 q 2 ; X 2 , X 1 ; q 1 , q 2 ) cf. B-type quiver in 3d [Dey–Hanany–Koroteev–Mekareeya] T. Kimura (Keio U) August 2017 @ YITP 9 / 15

  17. Example A (2) quiver: 1 Root parameter: ( d 1 , d 2 ) = (4 , 1) with d 12 = 1 Vector multiplet Z vec = Z vec ( X 1 ; q 1 , q 4 2 ) & Z vec = Z vec ( X 2 ; q 1 , q 2 ) 1 2 Bifund hypermultiplet 4 � Z bf ( µq r − 1 Z bf ; X 1 , X 2 ; q 1 , q 4 1 → 2 = 2 ) 2 r =1 Z bf 2 → 1 = Z bf ( µ − 1 q 1 q 2 ; X 2 , X 1 ; q 1 , q 2 ) T. Kimura (Keio U) August 2017 @ YITP 10 / 15

  18. Non-perturbative aspects: Seiberg–Witten geometry Coulomb branch of 4d N = 2 theory: � � ∂ F a i = λ and = λ ∂a i A i B i Contour integral on Seiberg–Witten curve λ = xdy Σ = { ( x, y ) ∈ C × C ∗ | H ( x, y ) = 0 } with y U( n ) SYM theory: H ( x, y ) = y + y − 1 − ( x n + · · · ) � � y + y − 1 = x n + · · · =: T n ( x ) Σ = Prepotential: F = lim ǫ 1 , 2 → 0 log Z T. Kimura (Keio U) August 2017 @ YITP 11 / 15

  19. Seiberg–Witten geometry for ADE-quiver gauge theory determined by the fundamental characters of ADE-group [Nekrasov–Pestun] T. Kimura (Keio U) August 2017 @ YITP 12 / 15

  20. Seiberg–Witten geometry for ADE-quiver gauge theory determined by the fundamental characters of ADE-group [Nekrasov–Pestun] Seiberg–Witten geometry for Γ -quiver gauge theory determined by the fundamental characters of Γ -group [TK–Pestun] T. Kimura (Keio U) August 2017 @ YITP 12 / 15

  21. Quantum Seiberg–Witten geometry for ADE-quiver determined by the fundamental q -characters of ADE-group [Nekrasov–Pestun–Shatashvili] Quantum Seiberg–Witten geometry for Γ -quiver determined by the fundamental q -characters of Γ -group [TK–Pestun] T. Kimura (Keio U) August 2017 @ YITP 13 / 15

  22. Doubly quantum Seiberg–Witten geometry for ADE-quiver determined by the fundamental qq -characters of ADE-group [Nekrasov] [TK–Pestun] Doubly quantum Seiberg–Witten geometry for Γ -quiver determined by the fundamental qq -characters of Γ -group [TK–Pestun] T. Kimura (Keio U) August 2017 @ YITP 14 / 15

  23. Summary Non-simply-laced quiver gauge theory “Root” parameter d i ∈ Z > 0 for i ∈ { nodes } Instanton counting with ( q 1 , q d i 2 ) Multiplication of bifund hyper (doubled arrow) Non-perturbative tests: (quantum) Seiberg–Witten geometry T. Kimura (Keio U) August 2017 @ YITP 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend