y p o c
play

Y P O C Mechanisms of T Transcranial Current Stimulation O N - PowerPoint PPT Presentation

Y P O C Mechanisms of T Transcranial Current Stimulation O N O D Flavio Frohlich University of North Carolina - Chapel Hill E Department of Psychiatry S Department of Cell Biology and Physiology Department of Biomedical Engineering


  1. Y P O C Mechanisms of T Transcranial Current Stimulation O N O D Flavio Frohlich University of North Carolina - Chapel Hill E Department of Psychiatry S Department of Cell Biology and Physiology Department of Biomedical Engineering A Department of Neurology Neuroscience Center E www.networkneuroscientist.org L P www.facebook.com/FrohlichLabUNC

  2. Y Conflicts of Interest P O C UNC owns IP related with FF as the lead inventor. • T UNC has determined the absence of a conflict of • O interest (COI) for the majority of work presented N here and has determined a “ COI with administrative considerations ” for the clinical O trials in the Frohlich Lab. D FF is the founder, chief scientific officer, and • majority owner of Pulvinar Neuro LLC. E Received industry funding from Tal Medical (travel + • S research) A I frequently travel and give presentations. I typically • E receive reimbursement and a stipend. L My preferred brain stimulation modality is doppio • P espresso .

  3. Y P O C T O N O D E S A E L P

  4. Y P O C Standing on the T O N Shoulders of Giants O D E S A E L P

  5. Y P O C NEUROTECHNOLOGY T O N O Synergies with other treatments. D Adaptive, individualized therapies. E S Mobile, on-demand diagnosis and treatment. A E L P

  6. Y P O C T O N O D E S A E L P

  7. Y P O C T O N O D E S Brunelin et al. 2012 A E L P Frohlich et al. 2015

  8. Y P O C T O N O D E S A E Sellers et al. 2015 L P

  9. Y P O Lesson #1 C T O N Do not skip measuring O D brain activity (EEG, fMRI, E S etc.). #BeDifferent A E L P

  10. Y VERTICAL INTEGRATION P O C Patients T Clinical Trials O N Brain Stimulation, COMPLEXITY Human Neurophysiology O D In vivo (Animal) E Electrophysiology S A In vitro (Animal) E Electrophysiology TRACTABILITY L Model Systems P Computer Simulations

  11. Y P O Lesson #2 C T O N Leverage the tools of O D (network) neuroscience. E S #Collaboration A E L P

  12. Y TRANSCRANIAL CURRENT STIMULATION P O STUDY DESIGN C T O Behavioral Network Target N Target Target Engagement O D E S A E L P

  13. Y P O Lesson #3 C T O N Make sure you know your O D target and have a plan how E to engage it. S A E #RationalDesign L P

  14. Y TARGET ENGAGEMENT P O C How do we best engage a T O network target? N O D We need to understand what E the effect of stimulation is on S the brain in terms of A neurophysiology . E L P

  15. Y OUTLINE P O C 1. Cellular Effects T O N 2. Spatial Targeting O D 3. Targeting Network Dynamics E S A E L P

  16. Y P ELECTRIC FIELDS O C T O N How do electric fields change electric signaling in neurons? O D E S A E L P

  17. Y P “Anodal” “Cathodal” O Depolarized Soma Hyperpolarized Soma C Hyperpolarized Dendrite Depolarized Dendrite T O N O D E S A E L P

  18. Y CABLE EQUATION P O C T O N O D E S A E L P Frohlich and McCormick. 2010

  19. Y P NEURONAL MORPHOLOGY AND STATE O C Change in somatic membrane voltage: T • Increases with cable length. O • Decreases with membrane conductance. N • Increases with cable diameter. O A B D E vs. S A E L P Radmann et al. 2009

  20. Y P O C T O N O D Change in somatic membrane E voltage can be modeled as a sub- S threshold somatic current injection. A E L P Frohlich and McCormick. 2010

  21. Y P O Lesson #4 C T O N tDCS/tACS cause small O D changes in neuronal E membrane voltage. #synergy S A #EndogenousBrainActivity E L P

  22. Y SPATIAL TARGETING P O C Resistivity Tissue T [Ohm cm] O Copper 2e-6 N CSF 64 O Cortex 350 D White Matter 650 E Bone 8,000-16,000 S A E L P

  23. Y P IMPLEMENTATION O C T O • MR Scan N • Tissue segmentation • Numerical solution (e.g. finite elements). O D 1. Develop you own code E 2. Collaborate S 3. Buy tool / use free tool A E L P

  24. Y P O C T O N O D E S A E L P

  25. Y P O C T O N O D E S A E L P

  26. Y P O C T O N O D E S A E L P Modeling performed by Angel Peterchev Sellers et al 2015

  27. Y P O C T O N O D E S A E L P

  28. Y P O Lesson #5 C T O N MR scan + Segmentation + O D EF modeling = Spatial E Targeting S A #KnowYour3D E L #HowGoodisHD P

  29. Y P STRUCTURE DYNAMICS O C T O N O D E S A E L P BEHAVIOR

  30. Y P MODELING DYNAMICS O C T O N O D E S A E L P Frohlich 2014

  31. Y OSCILLATIONS P O C T O N O D E S A E L Caution: Most tACS literature refers to the P peak-to-peak amplitude as amplitude .

  32. Y P NETWORK DYNAMICS O C Raw Trace Spectrum T O 1. Raw trace. 2. Spectrum: Power as a N function of frequency. O 3. Spectrogram: Spectrum as D a function of time. 4. Coherence: Interaction E between two sites as a S function of frequency. A E L P

  33. Y P O C 1. Raw trace. 2. Spectrum: Power as a function of frequency. T O 3. Spectrogram: Spectrum as a function of time. N O D Raw Trace E Spectrogram S A E L P

  34. Y 1. Raw trace. P 2. Spectrum: Power as a function of frequency. O 3. Spectrogram: Spectrum as a function of time. C 4. Coherence: Interaction between two sites as a function T of frequency. O N O D E S A E L P

  35. Y P O Lesson #6 C T O N Brain rhythms effectively O D targeted by rhythmic brain E stimulation S A #MiddleSchoolMath E L P

  36. Y TARGETING BRAIN NETWORK DYNAMICS P O C T Berger 1929 O N O Neuroconn Write / Input Read / Output D tACS EEG E S A E L P Transcranial Alternating Current Stimulation (tACS)

  37. Y NATURALISTIC ELECTRIC FIELDS P O C T O N O D E S A E L P Frohlich and McCormick. 2010

  38. Y ARNOLD TONGUE P O C T O N O D E S A E L P Frohlich 2014

  39. Y P SPIKING NEURAL MODEL (NETWORK) O C T O N O D E S A E L P Ali et al. 2013

  40. Y P SPATIO-TEMPORAL DYNAMICS O C T O N O D E S A E L P Ali et al. 2013

  41. Y P O C T O N O D E S A E L P Ali et al. 2013

  42. Y STIMULATION PHASE P O C T O N O D E S A E L P Ali et al. 2013

  43. Y HOTSPOTS P O C T O N O D E S A E L P Ali et al. 2013

  44. Y P NETWORK-LEVEL MECHANISM O C T O N O D E S A E L P Ali et al. 2013

  45. Y P CELLULAR-LEVEL MECHANISM O C T O N O D E S A E L P Ali et al. 2013

  46. Y P O TARGETING A C SUBPOPULATION T O N O D E S A E L P Ali et al. 2013

  47. Y NETWORK RESONANCE P O C T O N O D E S A E L P Ali et al. 2013

  48. Y PHASE SLIPPING P O C T O N O D E S A E L P Ali et al. 2013

  49. Y P O C T O N O D E S A E L P Stitt, Negahbani, et al. (in prep)

  50. Y P O C T O N O D E S A E L P Stitt, Negahbani, et al. (in prep)

  51. Y P O C T O N O D E S A E L P Stitt, Negahbani, et al. (in prep)

  52. Y P O C T O N O D E S A E L P Stitt, Negahbani, et al. (in prep)

  53. Y INTERACTING NETWORKS P O C T O N O D E S A E L P Kutchko and Frohlich 2013

  54. Y MULTISTABILITY P O C T “Rapid Fire” “Slow Propagating” “Spiral Waves” O N O D E S A E L P Kutchko and Frohlich 2013

  55. Y STATE SWITCHING BY tACS P O C T O N O D E S A E Kutchko and Frohlich 2013 L P

  56. Y P O Lesson #7 C T O N Complexity of brain dynamics O requires computer simulations D to understand target E S engagement. A E L P #MultiStability #NerdForPresident

  57. Y TARGET: ALPHA OSCILLATIONS P O C T O N O D E “Offline” state, long-range • S functional connectivity, gating. A E Neurofeedback, rTMS (10 Hz), tACS, L • P others…

  58. Y COGNITIVE ENHANCEMENT P O C T “increased alpha power during creative ideation is among the most consistent O findings in neuroscientific research on N creativity” (Fink and Benedek, 2010) O High Creative Ideation Low Creative Ideation D E S A E L P Lustenberger et al. (2015)

  59. Y ENHANCING CREATIVITY P O C T O N O D E S A E Blinding was successful (p > 0.2). • L 10 Hz tACS significantly enhances creativity as measured by the Torrance • P Test of Creative Thinking (7.45 % ± 3.11 % S.E.M.; F 1,16 = 5.14, p = 0.036). No enhancement with 40Hz-tACS.. • Lustenberger et al. (2015)

  60. Y OSCILLATION ENHANCEMENT P O C T O N O D E S A E L P

  61. Y P FEEDBACK tACS TO MODULATE SLEEP SPINDLES O C T O N O D E S A E L P Lustenberger et al. (2015)

  62. IMPROVING MEMORY Y P O CONSOLIDATION C T O N O D E S A E L P Lustenberger et al. (2015)

  63. Y TARGET ENGAGEMENT P O C T O N O D E S A E L P

  64. Y P O Lesson #8 C T O N Individualize with feedback O stimulation to enhance target D engagement. E S #OMGWasThatASpindle A E L P

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend