x x
play

X X 2 H = i + ( 1) ( x i x j ) i j 1 V ( x ) = ( x ) - PowerPoint PPT Presentation

Non-linear dynamics of interacting electronic systems X X 2 H = i + V ( x i x j ) i i 6 = j X V k 0 V k 2 k F V k e ikx V ( x ) = k Lattinger liquid Model Hamiltonian: Elliptic Calogero-Sutherland model


  1. Non-linear dynamics of interacting electronic systems ≥ ¥ X X − ∂ 2 H = − i + V ( x i − x j ) i i 6 = j X V k ∼ 0 V k ∼ 2 k F V k e ikx V ( x ) = k Lattinger liquid

  2. Model Hamiltonian: Elliptic Calogero-Sutherland model ≥ ¥ X X − ∂ 2 H = i + λ ( λ − 1) ℘ ( x i − x j ) i j 1 V ( x ) = ℘ ( x ) → 1 1 ∇ δ ( x ) sin 2 x, x 2 , sinh 2 x, Interpolates between Lattinger liquid and Calogero model - quantum wires, edge states of FQHE The last and the major unsolved integrable model

  3. Free fermions: ϕ + ( ∂ x ϕ ) 2 = 0 ˙ X a k e ikx ρ ( x ) = −∇ x ϕ = ρ 0 + k ρ k = ρ † [ a k , a k 0 ] = kδ k + k 0 , − k

  4. ≥ ¥ X X − ∂ 2 H = i + λ ( λ − 1) ℘ ( x i − x j ) i j ϕ = 1 2( ∂ x ϕ ) 2 + ∂ 2 chiral sector ˙ x ˜ ϕ ϕ = 1 cot x − x 0 Z ℘ ( x + iL ) = ℘ ( x ) ϕ ( x 0 ) dx 0 ˜ πL L

  5. Chiral sector - long-time asymptotes of non-linear waves

  6. ϕ = 1 2( ∂ x ϕ ) 2 + ( λ − 1) ∂ 2 ˜ ˙ ϕ ILW-equation ϕ = 1 cot x − x 0 Z ϕ ( x 0 ) dx 0 ˜ πL L ϕ = 1 2( ∂ x ϕ ) 2 + ∂ 3 L → 0 : ˙ x ϕ KdV-equation ϕ = 1 ϕ ( x 0 ) Z 2( ∂ x ϕ ) 2 + ∂ 2 x − x 0 dx 0 L → ∞ : ˙ x Benjamin-Ono equation

  7. On the relation between Calogero model and CFT ϕ = T xy ˙ T xy = ( ∂ x ϕ ) 2 + α 0 ∂ 2 x ˜ ϕ Flux of energy through the boundary √ √ α 0 = λ − 1 / λ λ ( λ − 1) ( x i − x j ) 2

  8. Period of oscillations is (interaction) × ( δρ ) − 1 >> k − 1 F Quantum Non-linear Equations can be treated semiclassically

  9. Trigonometric Calogero-Sutherland model λ ( λ − 1) X X ∂ 2 H = − i + Model for edge states of the FQHE sin 2 ( x i − x j ) i j H Ψ = E Ψ Y ( e ix i − e ix j ) λ J Y ( x 1 , . . . , x N ) Ψ( x 1 , . . . , x N ) = i>j Jack symmetric polynomial Ψ( ...x i ...x j ... ) = e 2 πiλ Ψ( ...x j ...x i ... ) λ = 0 − bosons λ = 1 − fermions

  10. λ ( λ − 1) X X ∂ 2 H = − i + sin 2 ( x i − x j ) i j ϕ = 1 2( ∂ x ϕ ) 2 + ( λ − 1) ∂ 2 ˜ ˙ ϕ e ikx X ϕ ( x ) = [ a k , a − k 0 ] = λkδ kk 0 k a k , k X e ikx i a k> 0 = i

  11. Properties of Benjamin-Ono Equation ϕ + ( ∂ x ϕ ) 2 + ν∂ 2 x ϕ H = 0 ˙ Properties: 1 ) Integrable ( despite being non - local ) ; 2 ) Its solitons carry a quantized fractional charge: Z Z ρ dx = d ϕ = integer × ν 3 ) Solitons have Lorentzian shape: ρ s ( x, t ) = 1 v ν v 2 ( x − vt ) 2 + ν 2 π

  12. Soliton - collective excitation of particles

  13. Shock wave: competition between non - linear term and dispersion term ϕ + ( ∂ x ϕ ) 2 + ν∂ 2 x ϕ H = 0 ˙

  14. Long time asymptote: Soliton train

  15. time Soliton Train space

  16. 1/4 of quantum A single soliton ( area is 1/12 ) ( area is 1/3 )

  17. N=7 N=20 Soliton trains

  18. Separation between hole ( moving right ) and particles ( moving left )

  19. Conclusions: 1 ) Dynamics of the edge state is essentially non - linear; 2 ) Solitons of non - linear dynamics carry fractional charge; 3 ) A propagation of any front evolves to a shock wave and further in a fractionally quantized soliton train. Quantum shocks in BEC

  20. Quantum Hydrodynamics of Calogero-Sutherland model λ ( λ − 1) x i = p i ˙ X p i = ˙ ( x i − x j ) 3 j λ λ X X p i = − x i − y k x i − x k k k λ λ X X x i = ˙ − x i − y k x i − x k k k λ λ X X − ˙ y i = − y i − x k y i − y k k k

  21. λ λ X X x i = ˙ − x i − y k x i − x k k k λ λ X X − ˙ y i = − y i − x k y i − y k k k X X ϕ ( z ) = λ log( z − x k ) + λ log( z − y k ) i i X X ϕ ( z ) = λ ˜ log( z − x k ) − λ log( z − y k ) i i ϕ = 1 2( ∂ x ϕ ) 2 + ( λ − 1) ∂ 2 ˜ ˙ ϕ

  22. Density and velocity ≥ ¥ ϕ ( x + i 0) − ϕ ( x − i 0) = − 2 λπρ ( x ) ∂ x ≥ ¥ ϕ ( x + i 0) + ϕ ( x − i 0) = v − 2 iλ∂ x log ρ ∂ x ρ + ∂ x ( ρv ) = 0 ˙

  23. ρ + ∂ x ( ρv ) = 0 ˙ ≥ v 2 ¥ v + ∂ x ˙ 2 + w ( ρ ) = 0 w ( ρ ) = λ 2 π 2 ρ 2 − λ ( λ − 1) 1 √ ρ + πλ ( λ − 1) ∂ x ρ H √ ρ∂ 2 x 2 2 Z ρ H ( x ) = coth( x − x 0 ) ρ ( x 0 ) dx 0

  24. Chiral reduction ≥ πρ + ∂ x (log √ ρ ) H ¥ v = λ two equations become one Chiral non-linear equation ≥ πρ 2 + ρ∂ x (log √ ρ ) H ¥ ρ t + λ∂ x = 0 ρ ≈ ρ 0 + u + . . . u + uu x + ( λ − 1)˜ ˙ u xx = 0 Benjamin-On equation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend