x ray micro ct based 3d structure
play

X-ray micro-CT based 3D structure Semester project Final - PowerPoint PPT Presentation

Modelling the deformation of an X-ray micro-CT based 3D structure Semester project Final presentation Olivier Schpfer EPFL GC MA3 Project objective From an existing sample to a numerical model to use with the software


  1. Modelling the deformation of an X-ray micro-CT based 3D structure Semester project – Final presentation Olivier Schöpfer – EPFL – GC MA3

  2. Project objective • From an existing sample • to a numerical model • to use with the software “ Akantu ” from the EPFL LSMS lab [1] • in order to perform numerical testing of the sample 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 2

  3. X-ray micro-CT : What is it? • CT : Computed tomography • Before the X-ray CT, the slices had to be taken manually and examined by hand, one by one • Very long • Sample destroyed • Produces images similar to an X-ray, but in 3D • Non destructive • High resolution • Fast + no sample preparation needed • Automated 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 3

  4. X-ray micro-CT : How does it work? • Procedure: [3] [2] 2D 3D 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 4

  5. X-ray micro-CT : How does it work? • The receptor is there to read the intensity of the X-ray in comparison to the intensity that was emitted • The attenuation of the X-ray signal will give an indication on the material properties • Final intensity : 𝐽 = 𝐽 0 ∙ exp −𝜈 ∙ 𝑦 𝜈 ∶ attenuatiuon coefficient 𝑦 ∶ length of the x − ray path through the sample • The attenuation coefficient depends on material properties 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 5

  6. X-ray micro-CT : How does it work? • Need for a good calibration [5] Low energy High energy [4] 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 6

  7. Procedure to get a 3D model 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 7

  8. From a stack of slices to a 3D model • What comes out of the X-ray CT scan • What the 3D model looks like at first 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 8

  9. From a stack of slices to a 3D model • What comes out of the X-ray CT scan • What the 3D model looks like at first 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 9

  10. From a stack of slices to a 3D model • Binarize the slices 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 10

  11. From a stack of slices to a 3D model • Binarize the slices 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 11

  12. From a stack of slices to a 3D model • Remove Small Spots 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 12

  13. From a stack of slices to a 3D model • Remove Small Spots 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 13

  14. From a stack of slices to a 3D model • Possible to extract a subvolume to have lower computation requirements 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 14

  15. From a stack of slices to a 3D model • Generate a surface 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 15

  16. From a stack of slices to a 3D model • Generate a surface 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 16

  17. From a stack of slices to a 3D model • Generate a surface 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 17

  18. From a stack of slices to a 3D model • Generate a surface - Constrained Smoothing 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 18

  19. From a stack of slices to a 3D model • Generate a surface - Constrained Smoothing 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 19

  20. From a stack of slices to a 3D model • Generate a surface - Constrained Smoothing: Problem [6] Smoothing set to 9 Smoothing set to 1 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 20

  21. From a stack of slices to a 3D model • Simplify the modelization 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 21

  22. From a stack of slices to a 3D model • Simplify the modelization 30% 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 22

  23. From a stack of slices to a 3D model • Test the triangles before going to a tetrahedron model 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 23

  24. From a stack of slices to a 3D model • Intersection test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 24

  25. From a stack of slices to a 3D model • Intersection test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 25

  26. From a stack of slices to a 3D model • Intersection test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 26

  27. From a stack of slices to a 3D model • Intersection test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 27

  28. From a stack of slices to a 3D model • Intersection test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 28

  29. From a stack of slices to a 3D model • Aspect Ratio test Aspect ratio = 110’053 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 29

  30. From a stack of slices to a 3D model • Aspect Ratio test Aspect ratio = 110’053 Aspect ratio = 50 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 30

  31. From a stack of slices to a 3D model • Aspect Ratio test Aspect ratio = 110’053 Aspect ratio = 15 Aspect ratio = 50 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 31

  32. From a stack of slices to a 3D model • Aspect ratio – autofix : “Prepare generate tetra grid” • Will fix most of the aspect ratio errors • Remaining errors have to be corrected manually 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 32

  33. From a stack of slices to a 3D model • Aspect ratio – autofix : “Prepare generate tetra grid” • Will fix most of the aspect ratio errors • Remaining errors have to be corrected manually 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 33

  34. From a stack of slices to a 3D model • Aspect ratio – autofix : “Prepare generate tetra grid” • Will fix most of the aspect ratio errors • Remaining errors have to be corrected manually 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 34

  35. From a stack of slices to a 3D model • Orientation test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 35

  36. From a stack of slices to a 3D model • Orientation test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 36

  37. From a stack of slices to a 3D model • Remesh the surface before creating the tetrahedron model to have a simpler model and better triangles 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 37

  38. From a stack of slices to a 3D model • Remesh the surface before creating the tetrahedron model to have a simpler model and better triangles 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 38

  39. From a stack of slices to a 3D model • Remesh the surface before creating the tetrahedron model to have a simpler model and better triangles 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 39

  40. From a stack of slices to a 3D model • Remesh the surface before creating the tetrahedron model to have a simpler model and better triangles 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 40

  41. From a stack of slices to a 3D model • Generate Tetra Grid 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 41

  42. From a stack of slices to a 3D model • Generate Tetra Grid 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 42

  43. From a stack of slices to a 3D model • Export for Akantu 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 43

  44. From a stack of slices to a 3D model • Size of the model Units Editor Data Parameter Editor 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 44

  45. Traction test 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 45

  46. Bone material • Variable properties depending on : • Species (Human, Cow, Rat, etc …) • Age (Young, Old) • Health (Bone disease, Calcium levels, etc …) • Bone (Femur, Tibia, etc …) • Part of the bone (Cortical, Trabecular) [7] • “Freshness” of the sample and is it conserved wet? 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 46

  47. Bone material – Mechanical properties, example • Typical intervals for human trabecular bone • Young modulus : can vary from 10 to 3000 [MPa] • Ultimate strain : typically between 1.0 and 2.5% • Poisson’s Ratio : between 0.03 and 0.6 [8] • We should probably use a visco elastic constitutive law (Keaveny, Morgan and Yeh, 2004, p. 8.15) 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 47

  48. Bone material – Mechanical properties – Young Modulus • Traction test on a bone sample 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 48

  49. Bone material – Mechanical properties – Young Modulus • Traction test on a bone sample 𝐹 𝑓𝑚𝑏𝑡𝑢𝑗𝑑 = 3060 𝑁𝑄𝑏 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 49

  50. Bone material – Mechanical properties – Young Modulus • How to get the effective modulus 𝑐𝑝𝑜𝑓 𝑜 σ 𝑗 bone + 𝑤𝑝𝑗𝑒 𝑗 𝑐𝑝𝑜𝑓 = = 0.3424 = 34.2% 𝑐𝑝𝑜𝑓 bone + 𝑤𝑝𝑗𝑒 𝑜 𝑢𝑝𝑢 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 50

  51. Simple traction test with Akantu • Input: • E = 1000 [MPa] • 𝜉 = 0.25 • Tests: • 3 Displacement controlled : x, y, z • 3 Force controlled : x, y, z 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 51

  52. Simple traction test with Akantu • Displacement controlled • 𝜗 𝑗 = 1% , i = x, y, z • Young modulus calculation for x 𝜏 𝑦𝑦 • 𝐹 𝑦 = 𝜗 𝑜 𝜏 𝑦𝑦,𝑗 σ 𝑗 • 𝜏 𝑦𝑦 = 𝑜 • n = #elements on the considered surface In Paraview, 𝜏 𝑦𝑦 = 𝑡𝑢𝑠𝑓𝑡𝑡: 0 ; 𝜏 𝑧𝑧 = 𝑡𝑢𝑠𝑓𝑡𝑡: 4 ; 𝜏 𝑨𝑨 = 𝑡𝑢𝑠𝑓𝑡𝑡: 8 14.01.2019 Olivier Schöpfer - EPFL - GC MA3 52

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend