x ray dif f ract ion
play

X-ray Dif f ract ion Basic aspects of x- ray crystallography and - PowerPoint PPT Presentation

X-ray Dif f ract ion Basic aspects of x- ray crystallography and powder dif f raction Dif f raction f rom nanocrystalline materials Paolo. Scardi@unitn. it Special thanks to: Luca Gelisio, Alberto Leonardi, Luca Rebuf f i, Cristy


  1. X-ray Dif f ract ion • Basic aspects of x- ray crystallography and powder dif f raction • Dif f raction f rom nanocrystalline materials Paolo. Scardi@unitn. it Special thanks to: Luca Gelisio, Alberto Leonardi, Luca Rebuf f i, Cristy L. Azanza Ricardo, Mirco D’I ncau, Andrea Troian, Emmanuel Garnier, Mahmoud Abdellatief

  2. FROM SI NGLE CRYSTAL TO POWDER DI FFRACTI ON 1. Tradit ional reciprocal space approach : sum & average D perf ect (inf init e) cryst al ( ) ∝ ∑∑ ( ) π ⋅ 2 i S r * I s f f e mn sc m n m n ( ) ∝ ∫ Ω I s d { } ( ) ( ) ( ) ( ) ( ) ( ) ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ sc = 2 IP S D F APB C GRS ( ) ( ) ( ) ... I s F I s I s I s I s I s I s I s I s π PD 2 4 s 62 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  3. DI FFRACTI ON FROM NANOCRYSTALLI NE MATERI ALS L real nanocryst als are complex obj ect s non-cryst allographic (e.g. mult iply t winned) nanopart icles, 2D and highly disordered layer syst ems: Debye formula � t ranslat ional symmet ry: not verif ied (Direct Space) � large st rain / misf it – complex local at omic arrangement CdS-CdSe OCTAPODS I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  4. DI FFRACTI ON FROM NANOCRYSTALLI NE MATERI ALS 2. Direct (real) space approach : average & sum ∑∑ ( ) ∫ π ⋅ Ω 2 2 i s r f e d mn ( ) = m n I s r mn r mn π PD 2 4 s I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  5. DI FFRACTI ON FROM NANOCRYSTALLI NE MATERI ALS 2. Direct (real) space approach : average & sum ∑∑∫ ( ) π ⋅ Ω 2 2 i s r f e d mn ( ) = m n I s r mn r mn π PD 2 4 s ( ) π π sin 2 sr 1 ( ) ∫ π ⋅ = π φ π φ φ = 2 i s r 2 isr cos 2 mn e e 2 r sin d mn mn π π mn 2 4 2 r sr mn mn 0 r mn ( ) π sin 2 sr ∑∑ ( ) = 2 mn I s f π PD 2 sr m n mn Debye Scat t ering Equat ion (DSE) I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  6. DSE APPLI CATI ON TO NON-CRYSTALLOGRAPHI C NPs Debye Scat t ering Equat ion (DSE) ( ) π sin 2 sr ∑∑ = 2 mn I ( ) s f π PD 2 sr m n mn 66 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  7. DSE APPLI CATI ON TO GRAPHENE AND RELATED MATERI ALS Debye Scat t ering Equat ion (DSE) ( ) π sin 2 sr ∑∑ = 2 mn I ( ) s f π PD 2 sr m n mn L. Gelisio et al., J . Appl. Cryst . 43 (2014) 647 67 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  8. DSE APPLI CATI ON TO GRAPHENE AND RELATED MATERI ALS Debye Scat t ering Equat ion (DSE) ( ) π sin 2 sr ∑∑ = 2 mn I ( ) s f π PD 2 sr m n mn L. Gelisio, PhD Thesis, Univ. of Trent o, 2014 Carbon nanot ubes 68 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  9. DSE CALCULATI ON BY ATOMI C DI STANCE HI STOGRAM Debye Scat t ering Equat ion (DSE) ( ) ( ) π π sin 2 sr sin 2 sr ∑∑ ∑ = ≡ 2 2 mn mn I ( ) s f f B π π PD mn 2 sr 2 sr m n mn mn mn 8 1000 800 (a) 700 16000 (b) 100 600 7 300 Intensity 14000 10 6 200 B n 12000 1 5 Intensity 100 0.1 10000 100 110 4 0 B mn 0.01 210 8000 0.00.1 4.4 4.6 4.8 5.0 5.2 0 2 4 6 8 10 12 14 16 18 20 2 θ (degrees) r n (nm) 211 221 3 410 6000 300/ 321 330/ 411 310 111 222 322 421 2 311 320 4000 200 220 420 331 400 1 2000 0 0 0 1 2 3 4 5 0 20 40 60 80 100 120 140 160 2 θ (degrees) r mn (nm) Atomic distance histogram (B mn ) f or a cubic cr yst al wit h 8x8x8 sc unit cells (a) and cor r esponding powder pat t er n accor ding t o I PD (s), wit h f =1, unit cell par amet er , a 0 =0.361 nm (b). P. Scar di & L. Gelisio, “Dif f r act ion f r om nanocr yst alline mat er ials”, Chapt er XVI I I in Synchr ot ron Radiat ion, ed. S. Mobilio et al. Spr inger 2015. I n the coming months, look f or a special issue of Acta Crystallographyca A, edited by Billinge, Cervellino, Neder & Scardi Total Scattering methods – the 100 Years of the Debye Scattering Equation (DSE2015 conf erence, Cavalese (I ) June 2015) 69 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  10. PAI R DI STRI BUTI ON FUNCTI ON (PDF) Zernike & Prins (1927): f or amorphous specimens, volume V , N at oms, t he radial dist ribut ion f unct ion (RDF) is: ∞  ( )  I s ( ) ( ) ( ) ∫ RDF r = π ρ ≅ π ρ + π − π 2 2   4 r r 4 r 8 r s 1 Sin 2 sr ds 0 2   Nf 0 int ensit y in absolut e unit s: ( ) ( )   −  − −  2 I s N f a d c → =     2  f    c 2 f ( ) ( ) i M Compton 70 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  11. PDF AND SYNCHROTRON RADI ATI ON SR is mandat ory t o improve resolut ion! 1950 1999 � S. J . L. Billinge, Z. Krist allogr. 219 (2004) 117 71 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  12. PAI R DI STRI BUTI ON FUNCTI ON (PDF) ( ) ( ) = π ρ 2 RDF r 4 r r radial dist ribut ion f unct ion ( ) ( ) = π  ρ − ρ  G r 4 r  r  reduced radial dist ribut ion f unct ion 0 ( ) ( ) = ρ ρ g r r pair dist ribut ion f unct ion - PDF 0 ( ) ∞ I s 2 ( ) ( ) ( ) ∫ = +  −  π = 1 1 2 s S s   Sin sr ds S s ρ 2 r Nf 0 0 � S. J . L. Billinge, Z. Krist allogr. 219 (2004) 117 72 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  13. PDF AND SYNCHROTRON RADI ATI ON SR is mandat ory t o improve resolut ion! � Court esy of R. Neder 73 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  14. PDF OF NANOPARTI CLE SYSTEMS Ef f ect of f init e size and shape of t he nanopart icle � Court esy of R. Neder 74 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  15. PDF OF NANOPARTI CLE SYSTEMS I ndicat ion of st acking f ault s � Court esy of R. Neder 75 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  16. PDF ANALYSI S OF NANOPARTI CLE SYSTEMS Au nanopart icle + ligand � Court esy of R. Neder 76 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  17. PDF ANALYSI S OF NANOPARTI CLE SYSTEMS Au nanopart icle + ligand Bottom-up modelling DISCUS DIFFEV � Court esy of R. Neder 77 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  18. TOTAL SCATTERI NG TECHNI QUES PDF approach Debye Scat t ering Equat ion P. Scar di et al., Phys. Rev. B91 (2015) 155414 K. Page et al., J .Appl.Cr yst . 44 (2011) 327 78 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  19. TOTAL SCATTERI NG TECHNI QUES PDF approach Debye Scat t ering Equat ion K. Page et al., J .Appl.Cr yst . 44 (2011) 327 P. Scar di & L. Gelisio, Nat . Sci. Repor t s 6, 22221 (2016) 79 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  20. DI FFRACTI ON FROM NANOCRYSTALLI NE MATERI ALS 1. Tradit ional reciprocal space approach : sum & average ( ) ∝ ∫ Ω I s d { } ( ) ( ) ( ) ( ) ( ) sc = 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ IP S D F APB C GRS I s F I s I ( ) s I ( ) s I ( ) s I s I s I s ... π PD 2 4 s 2. Tot al Scat t ering met hods Direct (real) space approach: average & sum Debye Scat t ering Equat ion (DSE) ( ) π sin 2 sr ( ) ∑∑ = 2 mn I s f π PD 2 sr m n mn Pair Dist ribut ion Funct ion (PDF) ( ) ρ ∞ r 1 ( ) ( ) ( ) ∫ = = +  −  g r 1 Q S Q  1  Sin Qr dQ ρ π ρ 2 2 r 0 0 0   1 ( ) ( ) ( ) ∫ = 2 + π  ρ − ρ  π   I s N f 1 4 r  r  Sin 2 sr dr π 0   2 s V 80 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

  21. DI FFRACTI ON FROM NANOCRYSTALLI NE MATERI ALS Current research / f ut ure t rends � t oward an int egrat ion bet ween at omist ic modelling and dif f ract ion analysis: real st ruct ure of nanopart icle syst ems Debye Scat t ering Equat ion ( ) π sin 2 sr ∑∑ = 2 mn I ( ) s f π PD 2 sr m n mn geometrical relaxed (energy minimization) L. Gelisio, K.R. Beyerlein & P. Scardi, Thin Solid Films (2012). In press. 81 I CTP School - Trieste, 04. 04. 2016 P. Scardi – Dif f raction f rom nanocrystalline materials

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend