wonder of sine gordon y systems joint with t nakanishi
play

Wonder of sine-Gordon Y-systems (joint with T. Nakanishi) Salvatore - PowerPoint PPT Presentation

Wonder of sine-Gordon Y-systems (joint with T. Nakanishi) Salvatore Stella Department of Mathematics Northeastern University Boston, MA stella.sa@husky.neu.edu April 20, 2013 Y -systems Systems of functional algebraic relations coming


  1. Wonder of sine-Gordon Y-systems (joint with T. Nakanishi) Salvatore Stella Department of Mathematics Northeastern University Boston, MA stella.sa@husky.neu.edu April 20, 2013

  2. Y -systems • Systems of functional algebraic relations coming from the study of TBA. • Actively studied in the ’90 with ad-hoc methods. • Usually complicated: it is hard to produce explicit solutions. • Many of these system exhibit (in several cases conjectural) periodicity properties.

  3. Classical Y -systems Fix a finite type Dynkin diagram X . Let A = ( a mn ) be the corresponding Cartan matrix. Consider the family of commuting variables { Y m ( u ) | m ∈ X, u ∈ Z } .

  4. Classical Y -systems Fix a finite type Dynkin diagram X . Let A = ( a mn ) be the corresponding Cartan matrix. Consider the family of commuting variables { Y m ( u ) | m ∈ X, u ∈ Z } . Definition The classical Y -system associated to X is the system of algebraic relations � (1 + Y n ( u )) − a mn Y m ( u − 1) Y m ( u + 1) = (1) n � = m

  5. Zamolodchikov’s Conjecture Let h be the Coxeter number of X . Conjecture The solutions of (1) are periodic with period 2( h + 2) . That is, for any m ∈ X and u ∈ Z , Y m ( u + 2( h + 2)) = Y m ( u )

  6. Zamolodchikov’s Conjecture Let h be the Coxeter number of X . Conjecture The solutions of (1) are periodic with period 2( h + 2) . That is, for any m ∈ X and u ∈ Z , Y m ( u + 2( h + 2)) = Y m ( u ) Proofs • When X is of type A n the conjecture was proved independently by Frenkel-Szenes and Gliozzi-Tateo constructing the explicit solution. • For general X the conjecture was proved by Fomin-Zelevinsky using y -pattern of cluster algebras.

  7. Idea of the general proof • Let X = X + ⊔ X − be a bipartition of X such that m ∈ X ε ( m ) . Then the Y -system (1) only involves variables { Y m ( u ) } with a fixed parity of ε ( m )( − 1) u .

  8. Idea of the general proof • Let X = X + ⊔ X − be a bipartition of X such that m ∈ X ε ( m ) . Then the Y -system (1) only involves variables { Y m ( u ) } with a fixed parity of ε ( m )( − 1) u . • Impose Y m ( u ) = Y m ( u + 1) if ε ( m ) = ( − 1) u and combine with (1) to get � n � = m (1+ Y n ( u )) − amn � ε ( m ) = ( − 1) u +1 Y m ( u + 1) = (2) Y m ( u ) ε ( m ) = ( − 1) u Y m ( u )

  9. Idea of the general proof • Let X = X + ⊔ X − be a bipartition of X such that m ∈ X ε ( m ) . Then the Y -system (1) only involves variables { Y m ( u ) } with a fixed parity of ε ( m )( − 1) u . • Impose Y m ( u ) = Y m ( u + 1) if ε ( m ) = ( − 1) u and combine with (1) to get � n � = m (1+ Y n ( u )) − amn � ε ( m ) = ( − 1) u +1 Y m ( u + 1) = (2) Y m ( u ) ε ( m ) = ( − 1) u Y m ( u ) • Realize that (2) is the y -pattern evolution for a particular sequence of mutation ( bipartite ) in a cluster algebra of type X

  10. General philosophy Periodic behaviour in Y -systems and cluster algebras are intimately related: to any sequence of mutations fixing a seed of a cluster algebra corresponds an ( explicit ) periodic Y -system.

  11. General philosophy Periodic behaviour in Y -systems and cluster algebras are intimately related: to any sequence of mutations fixing a seed of a cluster algebra corresponds an ( explicit ) periodic Y -system. The same holds for any sequence of mutations fixing a seed up to relabeling.

  12. Reduced sine-Gordon (RSG) and sine-Gordon (SG) Y -systems • Generalization of classical Y -systems of types A and D respectively introduced by Tateo in 1995. • Obtained by grouping the variables into blocks ( generations ) and prescribing different time evolutions for each block. • The construction is “exotic”: it involves continued fractions. • The equations involved are complicated but, surprisingly, the conjectural periodicity is quite easy.

  13. Reduced sine-Gordon Y -system Let X RSG ( n 1 , . . . , n F ) be the Dynkin diagram of type A indexed by pairs ( a, m ) as follows: 1 2 3 F a � �� � � �� � � �� � � �� � • • • m 1 · · · n 1 − 2 1 · · · n 2 1 1 · · · n F

  14. Reduced sine-Gordon Y -system Let X RSG ( n 1 , . . . , n F ) be the Dynkin diagram of type A indexed by pairs ( a, m ) as follows: 1 2 3 F a � �� � � �� � � �� � � �� � • • • m 1 · · · n 1 − 2 1 · · · n 2 1 1 · · · n F To X RSG ( n 1 , . . . , n F ) associate the continued fractions 1 ξ a = [ n a , . . . , n 1 ] := (3) . 1 n a + 1 n a − 1 + ... + 1 n 1 Write ξ a as ratio of coprime integers: ξ a =: p a q a and set r a := p a + q a . Set also ε a := ( − 1) a − 1 .

  15. • For a general ( a, m ) other than (2 , 1) , (3 , 1) , . . . , ( F, 1) � Y ( a ) m ( u − p a ) Y ( a ) (1 + Y ( b ) ( u ) ε b ) ε b , m ( u + p a ) = k ( b,k ) ∼ ( a,m )

  16. • For a general ( a, m ) other than (2 , 1) , (3 , 1) , . . . , ( F, 1) � Y ( a ) m ( u − p a ) Y ( a ) (1 + Y ( b ) ( u ) ε b ) ε b , m ( u + p a ) = k ( b,k ) ∼ ( a,m ) • For ( a, m ) = (2 , 1) (i.e. the blue vertex) Y (2) ( u − p 2 ) Y (2) ( u + p 2 ) = (1 + Y (2) ( u ) − 1 ) − 1 (1 + Y (1) ( u )) 1 1 2 1 n 1 − 2 � (1 + Y (1) m ( u − 1 − m ) − 1 ) − 1 × m =1 n 1 − 2 � (1 + Y (1) m ( u + 1 + m ) − 1 ) − 1 . × m =1

  17. • For a general ( a, m ) other than (2 , 1) , (3 , 1) , . . . , ( F, 1) � Y ( a ) m ( u − p a ) Y ( a ) (1 + Y ( b ) ( u ) ε b ) ε b , m ( u + p a ) = k ( b,k ) ∼ ( a,m ) • For ( a, m ) = (2 , 1) (i.e. the blue vertex) Y (2) ( u − p 2 ) Y (2) ( u + p 2 ) = (1 + Y (2) ( u ) − 1 ) − 1 (1 + Y (1) ( u )) 1 1 2 1 n 1 − 2 � (1 + Y (1) m ( u − 1 − m ) − 1 ) − 1 × m =1 n 1 − 2 � (1 + Y (1) m ( u + 1 + m ) − 1 ) − 1 . × m =1 • For ( a, m ) = ( a, 1) with a = 3 , . . . , F (i.e. the red vertices) Y ( a ) ( u − p a ) Y ( a ) ( u + p a ) 1 1 = (1 + Y ( a ) ( u ) ε a ) ε a (1 + Y ( a − 2) n a − 2 − 2 δ a 3 ( u ) ε a ) ε a 2 n a − 1 � (1 + Y ( a − 1) ( u − p a + ( n a − 1 + 1 − m ) p a − 1 ) ε a ) ε a × m m =1 n a − 1 � (1 + Y ( a − 1) ( u + p a − ( n a − 1 + 1 − m ) p a − 1 ) ε a ) ε a , × m m =1

  18. Tateo’s conjecture (for RSG Y -systems) Conjecture The reduced Sine-Gordon Y -system associated to X RSG ( n 1 , . . . , n F ) is periodic with period 2 r F . That is Y ( a ) m ( u + 2 r F ) = Y ( a ) m ( u ) for any ( a, m ) ∈ X RSG ( n 1 , . . . , n F ) and any u ∈ Z .

  19. Tateo’s conjecture (for RSG Y -systems) Conjecture The reduced Sine-Gordon Y -system associated to X RSG ( n 1 , . . . , n F ) is periodic with period 2 r F . That is Y ( a ) m ( u + 2 r F ) = Y ( a ) m ( u ) for any ( a, m ) ∈ X RSG ( n 1 , . . . , n F ) and any u ∈ Z . Moreover if L denotes the Rogers dilogarithm then � � � � � 6 1 � − 6 r (2) = r F n a + 2 L F π 2 1 + Y ( a ) m ( u ) a :even ( a,m,u ) ∈I + 0 ≤ u< 2 r F

  20. Tateo’s conjecture (for RSG Y -systems) Conjecture The reduced Sine-Gordon Y -system associated to X RSG ( n 1 , . . . , n F ) is periodic with period 2 r F . That is Y ( a ) m ( u + 2 r F ) = Y ( a ) m ( u ) for any ( a, m ) ∈ X RSG ( n 1 , . . . , n F ) and any u ∈ Z . Moreover if L denotes the Rogers dilogarithm then � � � � � 6 1 � − 6 r (2) = r F n a + 2 L F π 2 1 + Y ( a ) m ( u ) a :even ( a,m,u ) ∈I + 0 ≤ u< 2 r F Theorem [Nakanishi,-] Tateo’s conjecture holds

  21. Example: X RSG (6 , 4 , 3) Z (0) Z ( − 1) 0 89 17 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  22. Example: X RSG (6 , 4 , 3) Z (0) Z ( − 1) 0 89 17 This triangulation represents a seed in a cluster algebra A of type A 103 . (It is a 106 -gon) 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  23. Example: X RSG (6 , 4 , 3) Z (0) Z ( − 1) 0 The conjectured periodicity of this 89 17 Y -system is 212 ; indeed 1 = 81 ξ 3 = 1 3 + 25 4+ 1 6 and r 3 = 81 + 25 = 106 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  24. Example: X RSG (6 , 4 , 3) Z (0) Z (1) 0 89 17 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  25. Example: X RSG (6 , 4 , 3) Z (1) 0 Z (2) 89 17 By reflecting (mutating) twice along different axes we rotated the picture by 17 steps. But 17 and 106 are coprime so we need to reflect 212 times to go back to the original triangulation. 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  26. Example: X RSG (6 , 4 , 3) Z (0) Z ( − 1) 0 89 17 We need to perform some identifications to associate the variables in our Y -system to coefficients in the cluster algebra A . The triangulation contains precisely 4 + 4 + 3 “different” arcs. 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • m 1 2 3 4 1 2 3 4 1 2 3

  27. Example: X RSG (6 , 4 , 3) Z (0) Z ( − 1) 0 89 17 p 1 = 1 copy of the first generation. 72 34 55 51 1 2 3 a � �� � � �� � � �� � • • • • • • m 1 2 3 4 1 2 3 4 1 2 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend