sine gordon models from conformal field theory to higgs
play

Sine-Gordon models: from Conformal Field Theory to Higgs physics - PowerPoint PPT Presentation

Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Sine-Gordon models: from Conformal Field Theory to Higgs physics Istvn Nndori , (V. Bacs, I. G. Mrin, N. Defenu, A. Trombettoni)


  1. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Sine-Gordon models: from Conformal Field Theory to Higgs physics István Nándori , (V. Bacsó, I. G. Márián, N. Defenu, A. Trombettoni) MTA-DE Particle Physics Research Group, University of Debrecen ERG2016, Trieste

  2. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Motivation Why Sine-Gordon (SG) models? � 1 � � 2 ( ∂ µ ϕ ) 2 + u cos ( βϕ ) d d x S SG [ ϕ ] = BKT (Berezinski-Kosterlitz-Thouless) phase transition ⇒ e.g. to study the effect of amplitude fluctuations Higgs physics – sine-Gordon type Higgs potential ⇒ e.g. to solve stability problem? CFT (Conformal Field Theory) – Zamolodchikov c-function ⇒ e.g. to determine the c-function in the RG flow ⇒ Functional Renormalization Group (FRG)

  3. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Wetterich RG equation Functional Renormalization Group Wetterich RG equation � � k ∂ k Γ k = 1 k ∂ k R k 2 Tr , Γ ( 2 ) + R k k R k ( p ) ≡ p 2 r ( y ) , y = p 2 k 2 regulator: R k → 0 ( p ) = 0 , R k → Λ ( p ) = ∞ , R k ( p → 0 ) > 0 Approximations � V k ( ϕ ) + Z k ( ϕ ) 1 � � 2 ( ∂ µ ϕ ) 2 + ... Γ k [ ϕ ] = x N cut g n ( k ) � ( 2 n )! ϕ 2 n V k = n = 1

  4. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Massive and Layered Sine-Gordon → topological β 2 Sine-Gordon, Z 2 + periodic − c = 8 π � 1 � � 2 ( ∂ µ ϕ ) 2 + u cos ( βϕ ) d 2 x S SG [ ϕ ] = ⇒ Coulomb-gas, 2D XY spin model, 2D superfluid, bosonised Thirring model → Ising-like ( β 2 Massive Sine-Gordon, Z 2 − c = ∞ ) � 1 � � 2 ( ∂ µ ϕ ) 2 + 1 2 M 2 ϕ 2 + u cos ( βϕ ) d 2 x S MSG [ ϕ ] = ⇒ Yukawa-gas, 2D XY spin model + external field, 2D charged superfluid, bosonised QED 2 N → β 2 Layered Sine-Gordon, Z 2 + (periodic) − c ( N ) = 8 π N − 1 � N � 2   N N � 2 ( ∂ µ ϕ n ) 2 + 1 1 � � � d 2 x 2 M 2 S LSG [ ϕ ] = ϕ n + u n cos ( βϕ n )   n = 1 n = 1 n = 1 ⇒ Layered vortex-gas, layered 2D XY spin model, layered superconductor, bosonised multiflavour QED 2

  5. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Sinh- and Shine-Gordon → topological β 2 Sine-Gordon, Z 2 + periodic − c = 8 π � 1 � � 2 ( ∂ µ ϕ ) 2 + u cos ( βϕ ) d 2 x S SG [ ϕ ] = = ⇒ Conformal Field Theory, characterised by the central charge C = 1 Sinh-Gordon, Z 2 − → phase-structure? � � 1 � 2 ( ∂ µ ϕ ) 2 + u cos ( i βϕ ) d 2 x S ShG [ ϕ ] = � � 1 � 2 ( ∂ µ ϕ ) 2 + u cosh ( βϕ ) d 2 x = = ⇒ Conformal Field Theory, characterised by the central charge C = 1 Ising: C = 1 / 2 Shine-Gordon, Z 2 + (periodic β 2 = 0) − → phase-structure? � 1 � � 2 ( ∂ µ ϕ ) 2 + u Re cos [( β 1 + i β 2 ) φ ] d 2 x S Shine [ ϕ ] = � 1 � � 2 ( ∂ µ ϕ ) 2 + u cos ( β 1 φ ) cosh ( β 2 φ ) d 2 x = = ⇒ Conformal Field Theory

  6. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Conformal invariance and fixed points of the FRG method Global dilatation symmetry ( a → λ a ) ⇒ symmetry under the dilatation of the length scale 1.0 ⇒ scale invariance ⇒ phase transition point 0.8 ⇒ fixed point of the FRG 0.6 < - u < For example: SG model ⇒ > > > > 0.4 < > > 0.2 < < < < > 0.0 0 5 10 15 20 25 30 35 40 ~ 1/ z Local dilatation symmetry ( a → λ ( x ) a ) ⇒ conformal transformations: relative angles unchanged ⇒ conformal group: finite dimensional for d � = 2 d = 2 dimensions: ⇒ conformal group: infinite dimensional ⇒ central charge (C) of the Virasoro algebra conformal invariance ⇔ scale invariance fixed points of FRG ⇒ central charges (C)

  7. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Conformal invariance and fixed points of the FRG method Global dilatation symmetry ( a → λ a ) ⇒ symmetry under the dilatation of the length scale ⇒ scale invariance c=0 1.0 III ⇒ phase transition point 0.8 ⇒ fixed point of the FRG 0.6 < - u < For example: SG model ⇒ > > > > 0.4 < > > 0.2 < < < > < I II 0.0 5 10 15 20 25 30 35 40 2 = 1/ z c=1 c=1 Local dilatation symmetry ( a → λ ( x ) a ) ⇒ conformal transformations: relative angles unchanged ⇒ conformal group: finite dimensional for d � = 2 d = 2 dimensions: ⇒ conformal group: infinite dimensional ⇒ central charge (C) of the Virasoro algebra conformal invariance ⇔ scale invariance fixed points of FRG ⇒ central charges (C)

  8. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II C-function Out of the fixed points? → C-theorem in d = 2! C-theorem → c-function A. B. Zamolodchikov, JETP Lett. 43 , 730 (1986) ⇒ function of the couplings: c(g) c=0 1.0 III ⇒ decreasing from UV to IR 0.8 ⇒ at fixed points: c ( g ⋆ ) = C 0.6 < - u < > > > > 0.4 < > > 0.2 < < < < I > II 0.0 5 10 15 20 25 30 35 40 2 = 1/ z c=1 c=1 C-function in FRG A. Codello, G. D’Odorico, and C. Pagani, JHEP 1407 , 040 (2014) ⇒ expression in LPA k ∂ k c k = [ k ∂ k ˜ k ( ϕ 0 )] 2 V ′′ k ( ϕ 0 )] 3 , [ 1 + ˜ V ′′ Questions: ⇒ c-function for the SG? ⇒ phase diagram, c-function for the ShG? ⇒ (interpolating models?)

  9. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II C-function for the SG model c=0 sine-Gordon, LPA + z 1.0 III 0.8 Rescaling z = 1 /β 2 , ˜ u = uk − 2 0.6 < � 1 - u < � � > > > > 0.4 d 2 x z ( ∂ µ ϕ ) 2 − (˜ uk 2 ) cos ( ϕ ) S SG [ ϕ ] = < 2 > > 0.2 < < < I > II < 0.0 5 10 15 20 25 30 35 40 2 = 1/ z c=1 c=1 FRG equations (power-law regulator b = 1) u 2 u k ) 2 ˜ ( k ∂ k ˜ 1 � � 1 � u 2 k ( 2 + k ∂ k )˜ 1 − ˜ u k = 1 − , k ∂ k z k = − , k ∂ k c k = k 3 2 π z k ˜ ( 1 + ˜ u k ) 3 u k 24 π [ 1 − ˜ u 2 k ] 2 c-function results (power-law regulator b = 2) 1.0 1.0 z + LPA, region III z + LPA, region I 0.2 1.0 0.8 0.8 0.19 0.8 c k=0 c k=0 0.18 0.6 0.17 0.4 0.6 0.6 0.16 0.2 c k c k 0.15 0.0 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 5 10 15 20 25 u k= 2 2 k= k= = 5.6 2 2 0.2 k= = 3.4 0.2 u k= = 0.9, k= = 40 2 2 u k= = 0.8, k= = 40 k= = 1.0 2 2 k= = 0.1 u k= = 0.7, k= = 40 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 k/ k/ V. Bacso, N. Defenu, A. Trombettoni, I. Nandori, Nucl. Phys. B 901 (2015) 444.

  10. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II C-function for the ShG model I sinh-Gordon, LPA Linearised FRG equation, LPA V k ( ϕ ) = − 1 ( 2 + k ∂ k ) ˜ ˜ k ( ϕ ) + O ( ˜ V ′′ 2 V ′′ k ) 4 π SG model ˜ V SG ( ϕ ) = ˜ u k cos ( βϕ ) � − 2 + 1 � 4 π β 2 β 2 k ∂ k ˜ u k = ˜ u k → c = 8 π ⇒ topological phase transition ShG model ˜ V ShG ( ϕ ) = ˜ u k cos ( i βϕ ) � − 2 − 1 � 4 π β 2 No β 2 k ∂ k ˜ u k = ˜ u k → c ⇒ No topological phase transition N. Defenu, V. Bacso, I. G. Márián, I. Nandori, A. Trombettoni, in preparation

  11. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II C-function for the ShG model II sinh-Gordon, LPA + z Taylor expansion ( Z 2 symmetry) � 1 + 1 2 β 2 ϕ 2 + 1 � 4 ! β 4 ϕ 4 + ... ˜ u k cos ( i βϕ ) ∼ V ShG ( ϕ ) = ˜ = ˜ u k initial values: symmetric phase of the Ising ⇒ single phase FRG equations (power-law regulator b = 1) β → i β 1.2 � � u k = − β 2 � ShG model, mass-cutoff ( 2 + k ∂ k )˜ 1 − ˜ u 2 1 − 1.0 2 π ˜ u k k 0.8 β 4 u 2 k ˜ k ∂ k β 2 1 k = − k 0.6 - u 24 π 3 [ 1 − ˜ u 2 k ] 2 > > > > > > > > > > > > > > 0.4 0.2 0.0 0 5 10 15 20 25 30 35 40 2 ⇒ single phase! N. Defenu, V. Bacso, I. G. Márián, I. Nandori, A. Trombettoni, in preparation

  12. Introduction FRG Sine-Gordon models C-function Results Summary I SG Higgs potential Summary II Summary I C-function for the SG model obtained in FRG No topological-type phase transition for the ShG model No Ising-type phase transition for the ShG model Phase structure of the ShG model ( β → i β ) C-function for the ShG model ( β → 0) Outlook Interpolating models → Poster (No. 2)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend