integrability and the conformal field theory of the higgs
play

Integrability and the Conformal Field Theory of the Higgs branch - PowerPoint PPT Presentation

Integrability and the Conformal Field Theory of the Higgs branch Bogdan Stefaski, jr. City University London 17 November 2015 Based on 1411.3676 , JHEP 1506 (2014) 103 with O. Ohlsson Sax, A. Sfondrini AdS 3 with 8 + 8 susys and integrability


  1. Integrability and the Conformal Field Theory of the Higgs branch Bogdan Stefański, jr. City University London 17 November 2015 Based on 1411.3676 , JHEP 1506 (2014) 103 with O. Ohlsson Sax, A. Sfondrini

  2. AdS 3 with 8 + 8 susys and integrability � T 4 � String theory on AdS 3 × S 3 × M 4 where M 4 = S 3 × S 1

  3. AdS 3 with 8 + 8 susys and integrability � T 4 � String theory on AdS 3 × S 3 × M 4 where M 4 = S 3 × S 1 supported by R-R ⊕ NS-NS 3-form flux

  4. AdS 3 with 8 + 8 susys and integrability � T 4 � String theory on AdS 3 × S 3 × M 4 where M 4 = S 3 × S 1 supported by R-R ⊕ NS-NS 3-form flux � All-loop integrable wsheet 2-body S matrix known [Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli]

  5. AdS 3 with 8 + 8 susys and integrability � T 4 � String theory on AdS 3 × S 3 × M 4 where M 4 = S 3 × S 1 supported by R-R ⊕ NS-NS 3-form flux � All-loop integrable wsheet 2-body S matrix known [Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli] � expectation : integrability solves spectral problem (from string side) [Abbott, Aniceto, Babichenko, Bianchi, Beccaria, David, Dekel, Engelund, Hernandez, Hoare, Levkovich-Maslyuk, Macorini, McKeown, Nieto, Pittelli, Prinsloo, Regelskis, Roiban, Sahoo, Stepanchuk, Sundin, Tseytlin, Wolf, Wulff, Zarembo]

  6. AdS 3 with 8 + 8 susys and integrability � T 4 � String theory on AdS 3 × S 3 × M 4 where M 4 = S 3 × S 1 supported by R-R ⊕ NS-NS 3-form flux � All-loop integrable wsheet 2-body S matrix known [Borsato, Ohlsson Sax, Lloyd, Sfondrini, BS, Torrielli] � expectation : integrability solves spectral problem (from string side) [Abbott, Aniceto, Babichenko, Bianchi, Beccaria, David, Dekel, Engelund, Hernandez, Hoare, Levkovich-Maslyuk, Macorini, McKeown, Nieto, Pittelli, Prinsloo, Regelskis, Roiban, Sahoo, Stepanchuk, Sundin, Tseytlin, Wolf, Wulff, Zarembo] � This talk focuses on pure R-R, M 4 = T 4 case Global symmetry is psu ( 1 , 1 | 2 ) 2

  7. CFT 2 integrability: expectations from AdS 3 � λ − → 0 limit gives local spin-chain [Ohlsson Sax, BS, Torrielli ’11]

  8. CFT 2 integrability: expectations from AdS 3 � λ − → 0 limit gives local spin-chain [Ohlsson Sax, BS, Torrielli ’11] � Sites of spin-chain L ⊗ R

  9. CFT 2 integrability: expectations from AdS 3 � λ − → 0 limit gives local spin-chain [Ohlsson Sax, BS, Torrielli ’11] � Sites of spin-chain L ⊗ R � S b L sites : 0 ⊕ 2 ⊕ S f 1 S b / S f 2 -BPS irrep of psu ( 1 , 1 | 2 ) with bos/ferm h.w. state

  10. CFT 2 integrability: expectations from AdS 3 � λ − → 0 limit gives local spin-chain [Ohlsson Sax, BS, Torrielli ’11] � Sites of spin-chain L ⊗ R � S b L sites : 0 ⊕ 2 ⊕ S f 1 S b / S f 2 -BPS irrep of psu ( 1 , 1 | 2 ) with bos/ferm h.w. state � R sites same as L sites

  11. Outline 1 UV gauge theory • D1/D5 system, L UV • Coulomb and Higgs branches in UV and IR 2 CFT H • L IR • ADHM σ -model and small instantons • origin of the Higgs branch, L eff 3 ∆ from L eff and spin-chains 4 Outlook and Conclusions

  12. UV gauge theory: D1-D5 system � D1-D5 branes 0 1 2 3 4 5 6 7 8 9 N c × D1 • • N f × D5 • • • • • •

  13. UV gauge theory: D1-D5 system � D1-D5 branes 0 1 2 3 4 5 6 7 8 9 N c × D1 • • N f × D5 • • • • • • � �� � R-symmetry: su ( 2 ) L × su ( 2 ) R

  14. UV gauge theory: D1-D5 system � D1-D5 branes 0 1 2 3 4 5 6 7 8 9 N c × D1 • • N f × D5 • • • • • • � D1: ( 8 , 8 ) susy U ( N c ) vector mplet - dim. red. of N = 4 SYM

  15. UV gauge theory: D1-D5 system � D1-D5 branes 0 1 2 3 4 5 6 7 8 9 N c × D1 • • N f × D5 • • • • • • � D1: ( 8 , 8 ) susy U ( N c ) vector mplet - dim. red. of N = 4 SYM � D5: break susy to ( 4 , 4 )

  16. UV gauge theory: ( 4 , 4 ) susy 2d QCD Open-string low-energy dofs are gluons A µ , quarks λ and (4,4) susy

  17. UV gauge theory: ( 4 , 4 ) susy 2d QCD Open-string low-energy dofs are gluons A µ , quarks λ and (4,4) susy • D1-D1 strings ← → ( 8 , 8 ) U ( N c ) vector-multiplet: φ i , ψ , A µ , D ( 4 , 4 ) vector Φ : t a , χ ( 4 , 4 ) hyper T :

  18. UV gauge theory: ( 4 , 4 ) susy 2d QCD Open-string low-energy dofs are gluons A µ , quarks λ and (4,4) susy • D1-D1 strings ← → ( 8 , 8 ) U ( N c ) vector-multiplet: φ i , ψ , A µ , D ( 4 , 4 ) vector Φ : t a , χ ( 4 , 4 ) hyper T : • D1-D5 strings ← → ( 4 , 4 ) U ( N c ) × U ( N f ) hyper-multiplets: h a , λ ( 4 , 4 ) hyper H :

  19. UV gauge theory: ( 4 , 4 ) susy 2d QCD Open-string low-energy dofs are gluons A µ , quarks λ and (4,4) susy • D1-D1 strings ← → ( 8 , 8 ) U ( N c ) vector-multiplet: φ i , ψ , A µ , D ( 4 , 4 ) vector Φ : t a , χ ( 4 , 4 ) hyper T : • D1-D5 strings ← → ( 4 , 4 ) U ( N c ) × U ( N f ) hyper-multiplets: h a , λ ( 4 , 4 ) hyper H : • D5-D5 strings decouple: suppressed by large V 6789

  20. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM

  21. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � �� � dim. red. of L N = 4 SYM

  22. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM where F 2 + ( ∇ φ ) 2 + i ¯ ψ ∇ ψ + D 2 + . . . � � L Φ ( Φ ) = tr , ∇ t 2 + i ¯ � � L T ( T , Φ ) = tr χ ∇ χ + . . . , L H ( H , Φ ) = ∇ h 2 + i ¯ λ ∇ λ + h a φ i φ i h a + ¯ λΓ i φ i λ + . . . ,

  23. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � No H − T couplings

  24. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � No H − T couplings � L UV has two branches of susy vacua: • Coulomb branch: D1 move away from D5 • Higgs branch: D1 move/dissolve inside D5

  25. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � No H − T couplings � L UV has two branches of susy vacua: • Coulomb branch: D1 move away from D5 • Higgs branch: D1 move/dissolve inside D5 � g YM dimensionful: theory flows to CFT in IR

  26. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � No H − T couplings � L UV has two branches of susy vacua: • Coulomb branch: D1 move away from D5 • Higgs branch: D1 move/dissolve inside D5 � g YM dimensionful: theory flows to CFT in IR � IR CFT = CFT C ⊕ CFT H [Witten ’95, ’97]

  27. UV gauge theory: L UV fixed by susy 1 L UV = L Φ ( Φ ) + L T ( T , Φ ) + L H ( H , Φ ) g 2 YM � No H − T couplings � L UV has two branches of susy vacua: • Coulomb branch: D1 move away from D5 • Higgs branch: D1 move/dissolve inside D5 � g YM dimensionful: theory flows to CFT in IR � IR CFT = CFT C ⊕ CFT H [Witten ’95, ’97] � CFT H dual to AdS 3 [Maldacena ’97]

  28. CFT H : L IR � In IR g YM → ∞ so L Φ irrelevant and can be dropped [Witten ’97] L IR ( Φ , T , H ) = L T ( Φ , T ) + L H ( Φ , H )

  29. CFT H : L IR � In IR g YM → ∞ so L Φ irrelevant and can be dropped [Witten ’97] L IR ( Φ , T , H ) = L T ( Φ , T ) + L H ( Φ , H ) � L IR marginal if Φ has geometric dimensions [ φ i ] = 1 , [ A µ ] = 1 , [ Ψ ] = 3 / 2 , [ D ] = 2 while H and T have canonical scaling dimensions [ h a ] = [ t a ] = 0 , [ χ ] = [ λ ] = 1 / 2

  30. CFT H : L IR � In IR g YM → ∞ so L Φ irrelevant and can be dropped [Witten ’97] L IR ( Φ , T , H ) = L T ( Φ , T ) + L H ( Φ , H ) � L IR marginal if Φ has geometric dimensions [ φ i ] = 1 , [ A µ ] = 1 , [ Ψ ] = 3 / 2 , [ D ] = 2 while H and T have canonical scaling dimensions [ h a ] = [ t a ] = 0 , [ χ ] = [ λ ] = 1 / 2 � Φ enter quadratically as auxiliary fields in L IR

  31. CFT H : L ADHM � Φ auxiliary: eliminate using eoms [Witten 97] [Berkooz, Verlinde ’99] [Aharony, Berkooz ’99] L IR ( Φ , T , H ) − → L ADHM ( H , T )

  32. CFT H : L ADHM � Φ auxiliary: eliminate using eoms [Witten 97] [Berkooz, Verlinde ’99] [Aharony, Berkooz ’99] L IR ( Φ , T , H ) − → L ADHM ( H , T ) � L ADHM is ( 4 , 4 ) σ -model with target space M N c , N f the moduli space of N c instantons in su ( N f ) gauge theory

  33. CFT H : L ADHM � Φ auxiliary: eliminate using eoms [Witten 97] [Berkooz, Verlinde ’99] [Aharony, Berkooz ’99] L IR ( Φ , T , H ) − → L ADHM ( H , T ) � L ADHM is ( 4 , 4 ) σ -model with target space M N c , N f the moduli space of N c instantons in su ( N f ) gauge theory � L ADHM gives conventional picture of Higgs branch: D- and F-flatness conditions equivalent to ADHM construction

  34. CFT H : L ADHM � Φ auxiliary: eliminate using eoms [Witten 97] [Berkooz, Verlinde ’99] [Aharony, Berkooz ’99] L IR ( Φ , T , H ) − → L ADHM ( H , T ) � L ADHM is ( 4 , 4 ) σ -model with target space M N c , N f the moduli space of N c instantons in su ( N f ) gauge theory � L ADHM gives conventional picture of Higgs branch: D- and F-flatness conditions equivalent to ADHM construction � L ADHM has small instanton singularity: Metric on M N c , N f singular when instanton size goes to zero

  35. CFT H : states near origin � CFT H states localised near origin of Higgs branch (near small instanton singularity) not captured by L ADHM σ -model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend