when the catenary degree meets the tame degree in
play

When the catenary degree meets the tame degree in embedding - PowerPoint PPT Presentation

When the catenary degree meets the tame degree in embedding dimension three numerical semigroups Caterina Viola Cortona - September 2014 based on P . A. Garc a-S anchez, C. Viola, When the catenary degree meets the tame degree in


  1. When the catenary degree meets the tame degree in embedding dimension three numerical semigroups Caterina Viola Cortona - September 2014

  2. based on P . A. Garc´ ıa-S´ anchez, C. Viola, When the catenary degree meets the tame degree in embedding dimension three numerical semigroups, to appear in Involve . S. T. Chapman, P . A. Garc´ ıa-S´ anchez, Z. Tripp, C. Viola, ω -primality in embedding dimension three numerical semigroups, preprint. M. Delgado, P . A. Garc´ ıa-S´ anchez, J. J. Morais, GAP pakage numericalsgps

  3. Setup Let S = � n 1 , . . . , n p � be a p -generated numerical semigroup.

  4. Setup Let S = � n 1 , . . . , n p � be a p -generated numerical semigroup. A factorization of s ∈ S is an element x = ( x 1 , . . . , x p ) ∈ N p such that x 1 n 1 + · · · + x p n p = s .

  5. Setup Let S = � n 1 , . . . , n p � be a p -generated numerical semigroup. A factorization of s ∈ S is an element x = ( x 1 , . . . , x p ) ∈ N p such that x 1 n 1 + · · · + x p n p = s . The length of x is | x | = x 1 + · · · + x p .

  6. Setup Let S = � n 1 , . . . , n p � be a p -generated numerical semigroup. A factorization of s ∈ S is an element x = ( x 1 , . . . , x p ) ∈ N p such that x 1 n 1 + · · · + x p n p = s . The length of x is | x | = x 1 + · · · + x p . Given another factorization y = ( y 1 , . . . , y p ) , the distance between x and y is d ( x , y ) = max {| x − gcd ( x , y ) | , | y − gcd ( x , y ) |} , where gcd ( x , y ) = ( min { x 1 , y 1 } , . . . , min { x p , y p } ) .

  7. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11.

  8. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11. ( 11 , 0 , 0 ) ( 0 , 0 , 6 ) 11 ( 11 , 0 , 0 ) ( 0 , 0 , 6 )

  9. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11. ( 11 , 0 , 0 ) ( 8 , 2 , 0 ) ( 0 , 0 , 6 ) 3 10 ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 8 , 2 , 0 ) ( 0 , 0 , 6 )

  10. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11. ( 11 , 0 , 0 ) ( 8 , 2 , 0 ) ( 5 , 4 , 0 ) ( 0 , 0 , 6 ) 3 3 9 ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 5 , 4 , 0 ) ( 0 , 0 , 6 )

  11. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11. ( 11 , 0 , 0 ) ( 8 , 2 , 0 ) ( 5 , 4 , 0 ) ( 2 , 6 , 0 ) ( 0 , 0 , 6 ) 3 3 3 8 ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 2 , 6 , 0 ) ( 0 , 0 , 6 )

  12. 66 ∈ S = � 6 , 9 , 11 � , c ( S ) = 4 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } The distance between ( 11 , 0 , 0 ) and ( 0 , 0 , 6 ) is 11. ( 11 , 0 , 0 ) ( 8 , 2 , 0 ) ( 5 , 4 , 0 ) ( 2 , 6 , 0 ) ( 1 , 3 , 3 ) ( 0 , 0 , 6 ) 3 3 3 4 4 ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 3 , 0 , 0 ) ( 0 , 2 , 0 ) | ( 1 , 3 , 0 ) ( 0 , 0 , 3 ) | ( 1 , 3 , 0 ) ( 0 , 0 , 3 )

  13. The catenary degree The catenary degree of s ∈ S , c ( s ) , is the minimum nonnegative integer N such that for any two factorizations x and y of s , there exists a sequence of factorizations x 1 , . . . , x t of s such that x 1 = x , x t = y , for all i ∈ { 1 , . . . , t − 1 } , d ( x i , x i + 1 ) ≤ N . The catenary degree of S , c ( S ) , is the supremum (maximum) of the catenary degrees of the elements of S .

  14. The catenary degree of 77 ∈ � 10 , 11 , 23 , 35 � ( 1 , 4 , 1 , 0 ) ( 2 , 2 , 0 , 1 ) 3 3 2 5 2 6 ( 0 , 7 , 0 , 0 ) ( 2 , 1 , 2 , 0 )

  15. The catenary degree ( 1 , 4 , 1 , 0 ) ( 2 , 2 , 0 , 1 ) 3 3 2 5 2 ( 0 , 7 , 0 , 0 ) ( 2 , 1 , 2 , 0 )

  16. The catenary degree ( 1 , 4 , 1 , 0 ) ( 2 , 2 , 0 , 1 ) 3 3 2 2 ( 0 , 7 , 0 , 0 ) ( 2 , 1 , 2 , 0 )

  17. The catenary degree ( 1 , 4 , 1 , 0 ) ( 2 , 2 , 0 , 1 ) 3 2 2 ( 0 , 7 , 0 , 0 ) ( 2 , 1 , 2 , 0 )

  18. 66 ∈ S = � 6 , 9 , 11 � , t ( S ) = 7 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } Besides, 9 divides 66 ( 11 , 0 , 0 )

  19. 66 ∈ S = � 6 , 9 , 11 � , t ( S ) = 7 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } and 11 also divides 66 ( 8 , 2 , 0 ) 3 ( 11 , 0 , 0 )

  20. 66 ∈ S = � 6 , 9 , 11 � , t ( S ) = 7 The factorizations of 66 ∈ � 6 , 9 , 11 � are F ( 66 ) = { ( 0 , 0 , 6 ) , ( 1 , 3 , 3 ) , ( 2 , 6 , 0 ) , ( 4 , 1 , 3 ) , ( 5 , 4 , 0 ) , ( 8 , 2 , 0 ) , ( 11 , 0 , 0 ) } ( 8 , 2 , 0 ) 3 ( 11 , 0 , 0 ) 7 ( 4 , 1 , 3 )

  21. The tame degree The tame degree of S , t ( S ) , is defined as the minimum N such that for any s ∈ S and any factorization x of s , if s − n i ∈ S for some i ∈ { 1 , . . . , p } , then there exists another factorization y of s such that d ( x , y ) ≤ N and the i th coordinate of y is nonzero ( n i “occurs” in this factorization).

  22. The catenary degree of S is less than or equal to the tame degree of S . c ( S ) ≤ t ( S )

  23. The catenary degree of S is less than or equal to the tame degree of S . c ( S ) ≤ t ( S ) It is known that in some cases both coincide (for instance for monoids with a generic presentation).

  24. The catenary degree of S is less than or equal to the tame degree of S . c ( S ) ≤ t ( S ) It is known that in some cases both coincide (for instance for monoids with a generic presentation). We want to characterize when the equality holds if the embedding dimension of S is three.

  25. Embedding dimension three numerical semigroups Let S = � n 1 < n 2 < n 3 � be a numerical semigroup with embedding dimension 3. Define c i = min { k ∈ N \ { 0 } | kn i ∈ � n j , n k � , { i , j , k } = { 1 , 2 , 3 }} . Then, for all { i , j , k } = { 1 , 2 , 3 } , there exist some r ij , r ik ∈ N such that c i n i = r ij n j + r ik n k .

  26. Embedding dimension three numerical semigroups We know that Betti ( S ) = { c 1 n 1 , c 2 n 2 , c 3 n 3 } . Hence 1 ≤ # Betti ( S ) ≤ 3.

  27. Embedding dimension three numerical semigroups We know that Betti ( S ) = { c 1 n 1 , c 2 n 2 , c 3 n 3 } . Hence 1 ≤ # Betti ( S ) ≤ 3. Herzog proved that S is symmetric if and only if r ij = 0 for some i , j ∈ { 1 , 2 , 3 } , or equivalently, # Betti ( S ) ∈ { 1 , 2 } .

  28. Embedding dimension three numerical semigroups We know that Betti ( S ) = { c 1 n 1 , c 2 n 2 , c 3 n 3 } . Hence 1 ≤ # Betti ( S ) ≤ 3. Herzog proved that S is symmetric if and only if r ij = 0 for some i , j ∈ { 1 , 2 , 3 } , or equivalently, # Betti ( S ) ∈ { 1 , 2 } . Therefore, S is nonsymmetric if and only if # Betti ( S ) = 3.

  29. The nonsymmetric case Let S be a numerical semigroup minimally generated by { n 1 , n 2 , n 3 } with n 1 < n 2 < n 3 .

  30. The nonsymmetric case Let S be a numerical semigroup minimally generated by { n 1 , n 2 , n 3 } with n 1 < n 2 < n 3 . V. Blanco, P . A. Garc´ ıa-S´ anchez, A. Geroldinger proved that c ( S ) = t ( S ) for S a nonsymmetric embedding dimension three numerical semigroup.

  31. The nonsymmetric case Let S be a numerical semigroup minimally generated by { n 1 , n 2 , n 3 } with n 1 < n 2 < n 3 . V. Blanco, P . A. Garc´ ıa-S´ anchez, A. Geroldinger proved that c ( S ) = t ( S ) for S a nonsymmetric embedding dimension three numerical semigroup. For this reason we focus henceforth in the case S is symmetric, and thus # Betti ( S ) ∈ { 1 , 2 } .

  32. When S has two Betti elements When S has two Betti elements, we distinguish the three subcases: c 1 n 1 = c 2 n 2 � c 3 n 3 ; c 1 n 1 = c 3 n 3 � c 2 n 2 ; c 1 n 1 � c 2 n 2 = c 3 n 3 ;

  33. The case c 1 n 1 = c 2 n 2 � c 3 n 3 Proposition Let S = � n 1 , n 2 , n 3 � with n 1 < n 2 < n 3 and c 1 n 1 = c 2 n 2 � c 3 n 3 . Then c ( S ) < t ( S ) . Example S = � 4 , 6 , 7 � c ( S ) = 3 < t ( S ) = 5

  34. The case c 1 n 1 = c 3 n 3 � c 2 n 2 Proposition Let S = � n 1 , n 2 , n 3 � with n 1 < n 2 < n 3 and c 1 n 1 = c 3 n 3 � c 2 n 2 . Then c ( S ) < t ( S ) . Example S = � 4 , 5 , 6 � c ( S ) = 3 < t ( S ) = 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend