when j ginibre met e schr odinger
play

When J. Ginibre met E. Schr odinger Thomas J. Bothner Department - PowerPoint PPT Presentation

When J. Ginibre met E. Schr odinger Thomas J. Bothner Department of Mathematics Kings College London Joint with Jinho Baik, arXiv:1808.02419 CIRM - Integrability and Randomness April 11th, 2019 Thomas J. Bothner (KCL) Ginibre and


  1. When J. Ginibre met E. Schr¨ odinger Thomas J. Bothner Department of Mathematics King’s College London Joint with Jinho Baik, arXiv:1808.02419 CIRM - Integrability and Randomness April 11th, 2019 Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 1 / 37

  2. Did they actually meet? 2 1.5 1 0.5 0 -0.5 -1 F K G -1.5 Lf gingin z L this i L g n iz i -2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Figure 1: E.S.: 1887 - 1961 and J.G.: 1938 - ??? Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 2 / 37

  3. GOE to the comparison Consider the Gaussian Orthogonal Ensemble (GOE), i.e. matrices X = 1 2( Y + Y T ) ∈ R n × n : iid ∼ N (0 , 1) . (Mehta 1960) Y jk Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 3 / 37

  4. GOE to the comparison Consider the Gaussian Orthogonal Ensemble (GOE), i.e. matrices X = 1 2( Y + Y T ) ∈ R n × n : iid ∼ N (0 , 1) . (Mehta 1960) Y jk Equivalently think of this setup as a log-gas system λ 1 < λ 2 < . . . < λ n , λ j ∈ R , Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 3 / 37

  5. GOE to the comparison Consider the Gaussian Orthogonal Ensemble (GOE), i.e. matrices X = 1 2( Y + Y T ) ∈ R n × n : iid ∼ N (0 , 1) . (Mehta 1960) Y jk Equivalently think of this setup as a log-gas system λ 1 < λ 2 < . . . < λ n , λ j ∈ R , with joint pdf for the particles’ locations equal to (Hsu 1939) � n � f ( λ 1 , . . . , λ n ) = 1 − 1 � � λ 2 | λ k − λ j | exp . j Z n 2 1 ≤ j < k ≤ n j =1 Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 3 / 37

  6. GOE to the comparison Consider the Gaussian Orthogonal Ensemble (GOE), i.e. matrices X = 1 2( Y + Y T ) ∈ R n × n : iid ∼ N (0 , 1) . (Mehta 1960) Y jk Equivalently think of this setup as a log-gas system λ 1 < λ 2 < . . . < λ n , λ j ∈ R , with joint pdf for the particles’ locations equal to (Hsu 1939) � n � f ( λ 1 , . . . , λ n ) = 1 − 1 � � λ 2 | λ k − λ j | exp . j Z n 2 1 ≤ j < k ≤ n j =1 Objective: What can we say about the underlying limit laws? Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 3 / 37

  7. The eigenvalues { λ j } n j =1 form a Pfaffian point process (Dyson 1970), n � n ! � � � k R k ( λ 1 , . . . , λ k ) := R n − k f ( λ 1 , . . . , λ n ) d λ j = Pf K n ( λ i , λ j ) i , j =1 , ( n − k )! j = k +1 with a Hilbert-Schmidt class 2 × 2 matrix-valued kernel K n . Now analyze R k asymptotically in different scaling regimes. Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 4 / 37

  8. The eigenvalues { λ j } n j =1 form a Pfaffian point process (Dyson 1970), n � n ! � � � k R k ( λ 1 , . . . , λ k ) := R n − k f ( λ 1 , . . . , λ n ) d λ j = Pf K n ( λ i , λ j ) i , j =1 , ( n − k )! j = k +1 with a Hilbert-Schmidt class 2 × 2 matrix-valued kernel K n . Now analyze R k asymptotically in different scaling regimes. (A) The global eigenvalue regime: define the ESD µ X ( s ) = 1 n # { 1 ≤ j ≤ n , λ j ≤ s } , s ∈ R , Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 4 / 37

  9. The eigenvalues { λ j } n j =1 form a Pfaffian point process (Dyson 1970), n � n ! � � � k R k ( λ 1 , . . . , λ k ) := R n − k f ( λ 1 , . . . , λ n ) d λ j = Pf K n ( λ i , λ j ) i , j =1 , ( n − k )! j = k +1 with a Hilbert-Schmidt class 2 × 2 matrix-valued kernel K n . Now analyze R k asymptotically in different scaling regimes. (A) The global eigenvalue regime: define the ESD µ X ( s ) = 1 n # { 1 ≤ j ≤ n , λ j ≤ s } , s ∈ R , then, as n → ∞ , the random measure µ X / √ n converges almost surely to the Wigner semi-circular distribution (Wigner 1955) ρ sc ( λ ) = 1 � 2 − λ 2+ d λ. π Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 4 / 37

  10. 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 -1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5 Figure 2: Wigner’s law for one (rescaled) 2000 × 2000 GOE matrix on the left, plotted is the rescaled histogram of the 2000 eigenvalues and the semicircular density ρ sc ( λ ). On the right we compare Wigner’s law to the exact eigenvalue density for n = 4 and the associated eigenvalue histogram (sampled 4000 times). Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 5 / 37

  11. Universality I Wigner’s law is a universal limiting law (Arnold 1967, ...), it holds true for any (properly centered and scaled) symmetric or Hermitian j , k =1 with E | X jk | 2 < ∞ where X jk , j < k are Wigner matrix X = ( X jk ) n iid real or complex variables and X jj iid real variables independent of the upper triangular ones. Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 6 / 37

  12. Universality I Wigner’s law is a universal limiting law (Arnold 1967, ...), it holds true for any (properly centered and scaled) symmetric or Hermitian j , k =1 with E | X jk | 2 < ∞ where X jk , j < k are Wigner matrix X = ( X jk ) n iid real or complex variables and X jj iid real variables independent of the upper triangular ones. (B) The local eigenvalue regime: We shall zoom in on the right edge √ point λ 0 = 2 n and let n be even (Forrester, Nagao, Honner 1999), � √ � √ 1 x y K n 2 n + , 2 n + → Q Ai ( x , y ) , √ √ √ 1 1 1 2 n 2 n 2 n 6 6 6 as n → ∞ uniformly in x , y ∈ R chosen from compact subsets. Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 6 / 37

  13. Here, Q Ai is Hilbert-Schmidt on L 2 ( s 0 , ∞ ) with kernel entries � y Q 11 ( x , y ) = Q 22 ( y , x ) = K Ai ( x , y ) + 1 2 Ai( x ) Ai( t ) d t −∞ Q 12 ( x , y ) = − ∂ ∂ y K Ai ( x , y ) − 1 2 Ai( x )Ai( y ) , and � ∞ � y K Ai ( t , y ) d t − 1 Q 21 ( x , y ) = − Ai( t ) d t 2 x x � ∞ � ∞ + 1 Ai( t ) d t − 1 Ai( t ) d t · 2 sgn( x − y ) , 2 x y Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 7 / 37

  14. Here, Q Ai is Hilbert-Schmidt on L 2 ( s 0 , ∞ ) with kernel entries � y Q 11 ( x , y ) = Q 22 ( y , x ) = K Ai ( x , y ) + 1 2 Ai( x ) Ai( t ) d t −∞ Q 12 ( x , y ) = − ∂ ∂ y K Ai ( x , y ) − 1 2 Ai( x )Ai( y ) , and � ∞ � y K Ai ( t , y ) d t − 1 Q 21 ( x , y ) = − Ai( t ) d t 2 x x � ∞ � ∞ + 1 Ai( t ) d t − 1 Ai( t ) d t · 2 sgn( x − y ) , 2 x y where we use the trace-class kernel (on L 2 ( s 0 , ∞ )) � ∞ K Ai ( x , y ) = Ai( x + s )Ai( y + s ) d s . 0 Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 7 / 37

  15. Universality II The limiting kernel Q Ai ( x , y ) is once more universal (Soshnikov 1999), it governs the soft edge scaling limits of the k -point correlation functions for any (properly centered and scaled) real Wigner matrix X (modulo some decay constraints). Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 8 / 37

  16. Universality II The limiting kernel Q Ai ( x , y ) is once more universal (Soshnikov 1999), it governs the soft edge scaling limits of the k -point correlation functions for any (properly centered and scaled) real Wigner matrix X (modulo some decay constraints). The above kernel allows us to formulate the following central limit theorem for the largest eigenvalue λ max in the GOE, as n → ∞ , √ 1 λ max ( X ) ⇒ 2 n + √ 6 F 1 1 2 n Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 8 / 37

  17. Universality II The limiting kernel Q Ai ( x , y ) is once more universal (Soshnikov 1999), it governs the soft edge scaling limits of the k -point correlation functions for any (properly centered and scaled) real Wigner matrix X (modulo some decay constraints). The above kernel allows us to formulate the following central limit theorem for the largest eigenvalue λ max in the GOE, as n → ∞ , √ 1 λ max ( X ) ⇒ 2 n + √ 6 F 1 1 2 n where the cdf of F 1 equals (Tracy, Widom 2005) � 2 = det � 2 (1 − GQ Ai G − 1 ↾ L 2 ( s , ∞ ) ⊕ L 2 ( s , ∞ ) ) . P ( F 1 ≤ s ) √ with G = diag( g , g − 1 ) and g ( x ) = 1 + x 2 . Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 8 / 37

  18. 0.45 1 0.4 0.35 0.8 0.3 0.25 0.6 0.2 0.4 0.15 0.1 0.2 0.05 0 0 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Figure 3: Tracy-Widom distribution F 1 (blue) versus N (0 , 1) (red). mean variance skewness kurtosis N (0 , 1) 0 1 0 0 F 1 -1.20653 1.60778 0.29346 0.16524 Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 9 / 37

  19. There are other explicit formulæ for the cdf of F 1 : 1. Airy determinant and resolvent formula (Forrester 2006) � 2 = det(1 − ( K Ai + U ⊗ V ) ↾ L 2 ( s , ∞ ) ) � P ( F 1 ≤ s ) � x where ( U ⊗ V )( x , y ) = Ai( x ) A ( y ) and A ( x ) = −∞ Ai( y ) d y . Thomas J. Bothner (KCL) Ginibre and Schr¨ odinger April 11th, 2019 10 / 37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend