warm dense matter
play

(Warm Dense Matter) .. 15 2014 .. - PowerPoint PPT Presentation

. .. XIII ()


  1. ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ДАВЛЕНИЙ им. Л.Ф.ВЕРЕЩАГИНА Российской Академии Наук XIII Конференция (Школа) молодых ученых ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА И ВЫСОКИХ ДАВЛЕНИЙ пансионат МГУ "Буревестник" (Сочи, Вишневка) Диэлектрические свойства разогретого плотного вещества (Warm Dense Matter) Саитов И.М. 15 сентября 2014

  2. Саитов И.М. Диэлектрические свойства разогретого плотного вещества ( Warm Dense Matter)  2 2       4 1 e    2                   (2) lim 2 w f f       , , , , , , 2 k i k q j k i k e q j k i k q j k   0 q q , , i j k         (2) 2          (1) 1 P d          2 2 i 0       (1) (2) i Dielectric function DFT Kohn- Plasma frequency Reflectivity Conductivity Sham Effective free Absorbtion …… electron density Trasmission Electronic density of states

  3. Outline 1.Calculation method. 2.Reflectivity. 3.Plasma frequency. 4.Conclusions.

  4. 1. Calculation method

  5. Dielectric       (1) (2) i function Longitudinal expression for the imaginary part of dielectric function:  2 2     1 4 1 e               (2) lim 2 w f f     , , 2 k i k q j k  3 0 q q  , , , i j k   2             , , , , i k e q j k i k q j k    2 1 x      exp   x   2   2 2

  6. Longitudinal expression  2 2     4 1 e              (2) lim 2 w f f     2 k i , k q j , k  q 0 q , , i j k   2             , , , , i k e q j k i k q j k          | | | 2 k u i u         n k n k q n k n k lim E E   n k q n k q m E E q 0  n k n k Kubo-Greenwood formula (transverse expression)  2 2 2   4   e            (2) 2 w f E f E     , , k i k j k 2 2 m i j , , k   2         | | E E , , , , i k j k i k j k M. Gajdoš , K. Hummer, G. Kresse, J. Furthm ű ller, F. Bechstedt, Phys. Rev. B 73 , 045112 (2006).

  7. Kramers-Kronig transformation for the imaginary part of the dielectric function:         (2) 2          (1) 1 P d      2     2 i 0 The convergence in the upper limit of the integral is checked Density functional theory is used for calculation of ψ and E Т ~ 2.7 эВ for shocked xenon

  8.   2                        *   r r r r r  n  f d V n d i i i ext   2 m i      2 n r n r e              d d r r E n r TS n r       xc 2 r r         2     E T  , r r n f i j ij i i i i   2                       V r V r V r r E r ext H xc i i i  2  m         E n r 2   n r e       xc V r V d r      H xc 2 r r n r G    max 2 2    G    i k G r  r C e max E n k k G n cut 2 m G

  9. Pseudopotentional approach in DFT 46e – « core » 54 2 2 6 2 6 10 2 6 10 2 6 131 : 1 2 2 3 3 3 4 4 4 5 5 Xe s s p s p d s p d s p 8e - valent

  10. Reflectivity and conductivity 2 2 2 2                             1 2 1 1 2 1 2          R 2 2 2 2                             1 2 1 1 2 1 2                 (2) (1)     1 (1) (2) 0 0

  11. 2. Reflectivity

  12. Challenge R 1,0 Collisionless plasma   1064 nm Drude model [2] 0,4 Experiment [1] 0,2  г см 3 , / 0,0 1 2 3 4 [1] V.B. Mintsev, Yu.B. Zaporogets, Contrib. Plasma Phys. 29 , 493 (1989). [2] H. Reinholz, G. Röpke , A. Wierling, V. Mintsev, and V. Gryaznov, Contrib. Plasma Phys. 43 , 3 (2003)

  13. Calculation parameters   1064 nm ρ , 𝑕/𝑑𝑛 3 T, 𝐿 0.51 30050 0.97 29570 1.46 30260 1.98 29810 2.7 29250 3.84 28810

  14. Dependence of reflectivity on density R 1,0 Collisionless plasma   1064 nm Drude model [2] 0,4 DFT this work DFT [3] 0,2 Experiment [1] DFT with band gap corrections[3]  г см 3 , / 0,0 1 2 3 4 [1] V.B. Mintsev, Yu.B. Zaporogets, Contrib. Plasma Phys. 29 , 493 (1989). [2] H. Reinholz, G. Röpke , A. Wierling, V. Mintsev, V. Gryaznov, Contrib. Plasma Phys. 43 , 3 (2003) [3] M.P. Desjarlais, Contrib. Plasma Phys. 45 , 300 (2005).

  15. 3. Plasma frequency

  16. Dependence of static conductivity of shocked xenon on density 20 experiment 4 Om -1 m -1  10 H.Reinholz, G.R ö pke, A.Wierling, V.Mintsev, V.Gryaznov // 15 Contrib. Plasma Phys., V.43, pp. 3 – 10 (2003) 10 DFT/QMD this work 5 3  g/cm 0 0 1 2 3 4

  17. Method I. Conductivity of shocked xenon at density ρ = 𝟑. 𝟖𝐡/𝒅𝒏 𝟒 50 4 Om -1 m -1  10      (1) 40    0 30    2 2 1 DFT    2 20   0 p   2 2 1 10 Drude 0 0 10 20 30  eV

  18. Method II. Sum rule. 1 Xe, 3eV S(  max )             2 2 3  , g/cm d p 2 0.53 0 S 1.1 1 1.6 0,1  2.2   2 max m              2 0 S d 2.8  max 2 N e e 0 3.4    max , eV      2 2 / N e m S 0 1 p e 1 10  2 2       1 4 1 e    2                    (2) lim 2 w f f       , , , , , , 2 k i k q j k i k e q j k i k q j k   3 0 q q  , , , i j k

  19. Method III. Consideration of electrons with energies (E > E f ) as free particles      2 2 / n e m 0 p e

  20. Dependence of plasma frequency in xenon on density 7 Method I Method II 6 Method III Mintsev et al 5  p  eV 4 3 2  , g /cm 3 1 1 2 3 4

  21. Effective free electron density -3 n e , сm Method I Method II Method III Mintsev et al 22 10  , g / cm 3 21 10 0 1 2 3 4

  22. Dependence of plasma frequency on density for H 10  , p eV 1  3 0,1 , / g cm 0,65 0,7 0,75 0,8 0,85 0,9 0,95

  23. Dependence of plasma frequency on density for Se 7  , p eV 6 5  3 , / 4 g cm 4 5 6

  24. Conclusions 1 S(  max ) Method of estimation of 3  , g/cm 0.53 plasma frequency and 1.1 1.6 effective free electron 0,1 2.2 number density is proposed, 2.8 3.4 based on using sum rule.  max , eV DFT is applied. 1 10 7  p  eV The dependence of plasma 6 frequency on density is 5 obtained for 4 warm dense Xe and H 2 3 and liquid Se. 2  , g /cm 3 1 1 2 3 4

  25. Convergence (summary) in number of k-points in the Brillouin zone in number of particles in the supercell in frequency range in number of ionic configurations Relative error is ~ 5% - 30% depending on density

  26. Dependence of reflectivity of shocked xenon on density   1064 nm DFT/QMD 0,5 M.P. Desjarlais, Contrib. Plasma Phys. 45 , 300 (2005) DFT/QMD 0,4 this work Reflectivity with transverse expression 0,3 DFT/QMD this work with longitudinal expression 0,2 experiment V.B. Mintsev, Yu.B. Zaporogets, 0,1 Contrib. Plasma Phys. 29 , 493 (1989). 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0  ,g/cm 3

  27. Dependence of reflectivity of shocked xenon on density   694 nm 0,5 DFT/QMD this work 0,4 experiment Yu. B. Zaporoghets, Reflectivity V. B. Mintsev, V. K. Gryaznov, 0,3 V. E. Fortov , Physics of extreme state of matter, P.188 (2002). 0,2 0,1 0,0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5  ,g/cm 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend