k meson in dense matter
play

K meson in dense matter L. Tols 1 , R. Molina 2 , E. Oset 2 and A. - PowerPoint PPT Presentation

K self-energy from the s-wave K K N interaction K in dense matter Nuclear transparency in the A Introduction Results K meson in dense matter L. Tols 1 , R. Molina 2 , E. Oset 2 and A. Ramos 3 1 Theory


  1. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ meson in dense matter ¯ L. Tolós 1 , R. Molina 2 , E. Oset 2 and A. Ramos 3 1 Theory Group. KVI. University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands 2 Instituto de Física Corpuscular (centro mixto CSIC-UV) Institutos de Investigación de Paterna, Aptdo. 22085, 46071, Valencia, Spain 3 Estructura i Constituents de la Materia. Facultat de Física. Universitat de Barcelona, Avda. Diagonal 647, 08028 Barcelona, Spain

  2. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results Outline Introduction 1 K ∗ self-energy from the s-wave ¯ ¯ K ∗ N interaction 2 K ∗ → ¯ ¯ K π in dense matter 3 Results 4 Nuclear transparency in the γ A → K + K ∗− A ′ reaction 5 Conclusions 6

  3. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results Previous results on the interaction of vector mesons with nuclear matter Within the Nambu Jona Lasinio model there is no shift of the vector masses while the σ -mass decreases sharply with the density. V. Bernard and U. G. Meissner, Nucl. Phys. A 489 , 647 (1988). Recent calculations show no shift of the ρ meson and a broadening of the vector meson in nuclear matter. Rapp, 97; Urban, 99; D. Cabrera, E. Oset and M. J. Vicente Vacas, Nucl. Phys. A 705 , 90 (2002): △ M ( ρ 0 ) ∼ 30 MeV, Γ( ρ 0 ) ∼ 200 MeV. In the case of the φ meson, theoretical calculations also show no shift of the mass and a broadening of the meson. D. Cabrera and M. J. Vicente Vacas, Phys. Rev. C 67 , 045203 (2003): △ M ( ρ 0 ) ∼ 8 MeV, Γ( ρ 0 ) ∼ 30 MeV. The case of the ω meson had been more controvelsial [1,2,3,4,5]. M. Post, S. Leupold and U. Mosel, Nucl. Phys. A 741 , 81 (2004) 1. M. Kaskulov, H. Nagahiro, S. Hirenzaki and E. Oset, Phys. Rev. C 75 , 064616 (2007) 2. D. Trnka et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 94 , 192303 (2005) 3. 4. Mariana Nanova, Talk given at the XIII International Conference on Hadron Spectroscopy, December 2009, Florida State University. M. Kotulla et al. [CBELSA/TAPS Collaboration], Phys. Rev. Lett. 100 , 192302 (2008) 5.

  4. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results Previous results on the interaction of vector mesons with nuclear matter In M. Kaskulov, E. Hernandez and E. Oset, Eur. Phys. J. A 31 , 245 (2007) the authors predict no shift and a width of Γ( ρ 0 ) ∼ 90 MeV at normal nuclear density. Experiments done by the CLASS Collaboration confirms this null shift for the ρ mass and a broadening of the ρ, ω, φ mesons at normal nuclear density. M. H. Wood et al. [CLAS Collaboration], Phys. Rev. C 78 , 015201 (2008). C. Djalali et al. , Nucl. Part. Phys. 35 , 104035 (2008). These theoretical predictions and the results of CLASS are in contradiction with the parametrization derived by Hatsuda and Lee: m = m 0 ( 1 − 0 . 16 ρ ) ρ 0 and with the 20 % decrease in the ρ meson mass predicted by Brown and Rho. While the KEK team had earlier reported an attractive mass shift of the ρ . Conclusions could depend on the way the background is subtracted. R. Muto et al. [KEK-PS-E325 Collaboration], Phys. Rev. Lett. 98 , 042501 (2007)

  5. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results The VB → VB interaction L III = − 1 L ( 3 V ) 4 � V µν V µν � = ig � ( ∂ µ V ν − ∂ ν V µ ) V µ V ν � III III = g 2 L ( c ) 2 � V µ V ν V µ V ν − V ν V µ V µ V ν � V µν , g V µ ρ 0 V µν = ∂ µ V ν − ∂ ν V µ − ig [ V µ , V ν ]   ω ρ + K ∗ + 2 + √ √ 2  − ρ 0  g = MV K ∗ 0   ω ρ − 2 + 2 f  √ √  2   K ∗ 0 K ∗− ¯ φ µ L BBV = g 2 ( � ¯ B γ µ [ V µ , B ] � + � ¯ B γ µ B �� V µ � ) 1. Klingl,97; Palomar,02; M. Bando, T. Kugo, S. Uehara, K. Yamawaki, 1985, 88, 03 2. E. Oset and A. Ramos, arXiv:0905.0973 (2009, Eur. Phys. J. A)

  6. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results The VB → VB interaction I=0, S=-1 I=1, S=-1 Figure: | T | 2 for 5 200 * N * N K K different channels 100 for I = 0 , 1 and 0 0 -2 ] 20 3 strangeness 2 [MeV ωΛ ρΛ 2 S = − 1 . Channel 10 100x|T| 1 thresholds are 0 0 20 3 indicated by ρΣ ρΣ 2 vertical dotted 10 lines. 3 Λ and 2 Σ 1 appear: Λ( 1783 ) , 0 0 20 0.5 φΛ ωΣ Λ( 1900 ) , Λ( 2158 ) 10 and Σ( 1830 ) , 0 0 100 3 Σ( 1987 ) . PDG: Λ( 1800 ) , * Ξ * Ξ K K 2 50 Λ( 2000 ) , Σ( 1750 ) , Σ( 1940 ) , 1 Σ( 2000 ) . 0 0 1800 2000 2200 0.5 E cm [MeV] φΣ 0 1800 2000 2200 E cm [MeV]

  7. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ self-energy from the s-wave ¯ K ∗ N interaction ¯ Meson-baryon function loop in nuclear matter: G 0 ( √ s ) + lim Λ →∞ δ G ρ G ρ ( P ) Λ ( P ) , = Λ ( √ s ) Λ ( P ) − G 0 δ G ρ G ρ Λ ( P ) ≡ d 4 q � M ( q ) − D 0 B ( P − q ) D 0 i2 M D ρ B ( P − q ) D ρ M ( q ) � � = ( 2 π ) 4 Λ In-medium propagators: 2 M N � 1 − n ( � p ) n ( � p ) � v r ( − � p )¯ v r ( − � p ) D ρ N ( p ) u r ( � p )¯ u r ( � p ) + = { + } p 0 − E N ( � p 0 − E N ( � p 0 + E N ( � 2 E N ( � p ) p ) + i ε p ) − i ε p ) − i ε p 0 − E N ( � � � p ) δ D 0 N ( p ) + 2 π i n ( � p ) = 2 E N ( � p ) � S ¯ � ∞ q ) S K ∗ ( ω,� q ) � − 1 = K ∗ ( ω,� ( q 0 ) 2 − ω ( � q ) 2 − Π ¯ � � D ρ K ∗ ( q ) K ∗ ( q ) d ω = − ¯ q 0 − ω + i ε q 0 + ω − i ε 0

  8. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ self-energy from the s-wave ¯ K ∗ N interaction ¯ d 3 q M N � − n ( � p ) K ∗ N ( √ s ) + K ∗ N ( P ) = G 0 � G ρ ¯ + ¯ ( 2 π ) 3 ( P 0 − E N ( � p )) 2 − ω ( � q ) 2 + i ε E N ( � p ) − 1 / ( 2 ω ( � � q )) � ∞ S ¯ q ) ��� K ∗ ( ω,� � ( 1 − n ( � p )) d ω + � P 0 − E N ( � P 0 − E N ( � p ) − ω ( � q ) + i ε p ) − ω + i ε � 0 � p = � P − q � � 1 V I ( √ s ) T ρ ( I ) ( P ) = 1 − V I ( √ s ) G ρ ( I ) ( P ) K ∗ self-energy is then obtained by integrating T ρ ¯ The in-medium ¯ K ∗ N over the nucleon Fermi sea, d 3 p T ρ ( I = 0 ) P ) + 3 T ρ ( I = 1 ) K ∗ ( q 0 ,� � K ∗ N ( P 0 ,� K ∗ N ( P 0 ,� � q ) ( 2 π ) 3 n ( � p ) P ) = � Π ¯ ¯ ¯

  9. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ selfenergy coming from its decay into ¯ ¯ K π ¯ K ¯ K K ∗ ¯ K ∗ ¯ K ∗ ¯ K ∗ ¯ = ⇒ π π Figure: The ¯ K propagator in the free space (l), and in the medium (r). In the free space, we have: d 4 q i i � − i Π = − 6 g 2 µ q µ ǫ ν q ν K + i ǫǫ ′ ( 2 π ) 4 q 2 − m 2 ( P − q ) 2 − m 2 π ν q ν − ǫ ′ · � ǫ 1 q 2 δ ij m K ∗− ∼ 0 , ǫ µ q µ ǫ ′ P � For low momenta, → � 3 � → Im Π = g 2 ǫ ′ q 3 1 → Γ = 42 MeV Cutkosky rules − 4 π � ǫ · � P 0 −

  10. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ selfenergy coming from its decay into ¯ ¯ K π In the medium, we have: 1 1 → q 2 − m 2 q 2 − m 2 π − Π π ( q 0 ,� q ) π 1 1 → ( P − q ) 2 − m 2 ( P − q ) 2 − m 2 K − Π K ( P 0 − q 0 ,� P − � q ) K We use their Lehmann representations, this is: � ∞ d 4 q Im D π ( ω,� d ω q ) � K ∗ ( P 0 ,� 2 g 2 � q 2 π ( − 2 ω ) − i Π ¯ P ) ǫ ′ = ǫ · � ( 2 π ) 4 � ( q 0 ) 2 − ω 2 + i ǫ 0 � ∞ π ( − ) { Im D ¯ P 0 − q 0 − ω ′ + i η − Im D K ( ω ′ ,� d ω ′ K ( ω ′ ,� P − � q ) P − � q ) × P 0 − q 0 + ω ′ − i η } 0

  11. K ∗ self-energy from the s-wave ¯ K ∗ → ¯ ¯ K ∗ N interaction ¯ K π in dense matter Nuclear transparency in the γ A Introduction Results K ∗ selfenergy coming from its decay into ¯ ¯ K π K ∗ selfenergy is subtracted to get its The real part of the free ¯ physical mass at ρ = 0 The last term is ∝ Im D K is small and as approximation can be cancelled with the term in the free space Therefore, K ∗ ( P 0 ,� P ) = Π ¯ � ∞ � ∞ d 3 q q 2 1 d ω ′ Im D ¯ K ( ω ′ ,� P − � q ) � 2 g 2 ǫ · ǫ ′ { d ω Im D π ( ω,� q ) ( 2 π ) 3 � π 2 P 0 − ω − ω ′ + i η 0 0 d 3 q q 2 1 1 � � − Re P 0 − ω π ( q ) − ω K ( P − q ) + i ǫ } ( 2 π ) 3 2 ω π ( q ) 2 ω K ( P − q )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend