walking and stair climbing stabilization for position
play

Walking and stair climbing stabilization for position-controlled - PowerPoint PPT Presentation

Walking and stair climbing stabilization for position-controlled biped robots . Stphane Caron March 19, 2019 Presentation given at Wandercraft, Paris context . COMANOID project - https://comanoid.cnrs.fr 1 final demonstrator . 2 stair


  1. Walking and stair climbing stabilization for position-controlled biped robots . Stéphane Caron March 19, 2019 Presentation given at Wandercraft, Paris

  2. context . COMANOID project - https://comanoid.cnrs.fr 1

  3. final demonstrator . 2

  4. stair climbing part . https://www.youtube.com/watch?v=vFCFKAunsYM 3

  5. hrp-4 humanoid robot in short . Stiff position control on all joints Mechanical flexibility at the ankles 1 1. Kenji Kaneko, Fumio Kanehiro, Mitsuharu Morisawa, Kazuhiko Akachi, Gou Miyamori, Atsushi Hayashi et Noriyuki Kanehira. « Humanoid robot HRP-4 - Humanoid Robotics Platform with Light- 4 weight and Slim Body ». In : IEEE/RSJ International Conf. on Intelligent Robots and Systems . 2011.

  6. system overview . 5 Whole-body Walking Whole-body Kinematic Pattern Admittance Generation Control Control DCM DCM Control Observer

  7. walking pattern generation . 6 Desired Kinematic Footstep Whole-body Walking Whole-body Targets Locations Kinematic Pattern Admittance Generation Control Control DCM DCM Control Observer

  8. linear inverted pendulum mode m IEEE/RSJ International Conference on Intelligent Robots and Systems . 2001. 2. Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi et Hirohisa Hirukawa. « The 3D 2 . 7 • Equation of motion : • Floating base dynamics : M ¨ q + N = S T τ + J T f ¨ c = 1 ∑ i f i ˙ L c = ∑ i ( p i − c ) × f i • Angular momentum ˙ L c = 0 : c = ω 2 ( c − z ) ¨ with ω 2 = g / h and z the ZMP Linear Inverted Pendulum Mode : A simple modeling for a biped walking pattern generation ». In :

  9. divergent component of motion . rence on Intelligent Robots and Systems . 2011. 3. Johannes Englsberger, Christian Ott, Maximo Roa, Alin Albu-Schäffer, Gerhard Hirzinger et 3 • Unstable dynamics : 8 c • Divergent Component of Motion : • LIPM equation of motion : c = ω 2 ( c − z ) ¨ ξ = c + ˙ ω ˙ ξ = ω ( ξ − z ) al. « Bipedal walking control based on capture point dynamics ». In : IEEE/RSJ International Confe-

  10. walking pattern generation . Generate a CoM-ZMP trajectory that is : Consistent Feasible • ZMP belongs to support area • Contact force within friction cone Viable Not falling. For this system, same as Figure adapted from [Gri+17]. 9 c ( t ) = ω 2 ( c ( t ) − z ( t )) ∀ t > 0 , ¨ bounded : ∃ M > 0 , ∀ t > 0 , ∥ c ( t ) ∥ ≤ M

  11. walking pattern generation . So far we have tested three methods : • Linear Model Predictive Control [Wie06] • Foot-guided Agile Control through ZMP Manipulation [SY17] • Capturability of Variable-Height Inverted Pendulum [Car+18] 10

  12. linear model predictive control • Viability : terminal DCM 2006. 4. Pierre-Brice Wieber. « Trajectory free linear model predictive control for stable walking in the 4 • Variable step timings : [BW17] • Variable CoM height : [Bra+15] Allows a number of extensions, including : • Feasibility : ZMP in support area . • Consistency : state equation Constraints • Minimize CoM jerk • Track desired CoM velocity • Track desired ZMP reference Cost function Formulate preview control [Kaj+03] as a Quadratic Program (QP) : 11 presence of strong perturbations ». In : IEEE-RAS International Conference on Humanoid Robots .

  13. foot-guided agile control through zmp manipulation . tems . 2017. 5. Tomomichi Sugihara et Takanobu Yamamoto. « Foot-guided Agile Control of a Biped Robot 5 • Call many times to adapt step timings • Analytical solution : • Finite horizon, continuous time dynamics 12 subject to Predictive control with ZMP as input minimize ∫ T ( z ( t ) − z d ) 2 d t ⇒ Feasibility (best effort) z ( t ) 0 c = ω 2 ( c − z ) ¨ ⇒ Consistency c ( T ) + ˙ c ( T ) = ξ d ⇒ Viability ω z ∗ (0) = z d + 2( ξ (0) − z d ) − ( ξ d − z d ) e − ω T 1 − e − 2 ω T through ZMP Manipulation ». In : IEEE/RSJ International Conference on Intelligent Robots and Sys-

  14. variable-height inverted pendulum . ouvertes.fr/hal-01689331/document . 6. Stéphane Caron, Adrien Escande, Leonardo Lanari et Bastien Mallein. « Capturability-based 6 • Call many times to adapt step timings 13 • New input λ > 0 for height variations : ¨ c = λ ( c − z ) + g • Viability ⇒ boundedness condition : ∫ ∞ ( λ ( t ) r ( t ) − g ) e − Ω( t ) d t ξ (0) = 0 • Solve : tailored optimization (30-50 µ s) Analysis, Optimization and Control of 3D Bipedal Walking ». 2018. url : https://hal.archives-

  15. visualization . Visualization of stair climbing pattern in mc_rtc 14

  16. walking stabilization . 15 Desired Kinematic Footstep Whole-body Walking Whole-body Targets Locations Kinematic Pattern Admittance Generation Control Control DCM DCM Control Observer

  17. role of stabilization . Actuated joints converge but unactuated floating base diverges : In walking pattern By robot without stabilization Figure adapted from [Tak+09]. 16

  18. floating base facts . Let's review the facts : • Floating base translation is unactuated • Its dynamics are reduced to : • Only way to control it is via indirect force control of the ZMP z 17 c = ω 2 ( c − z ) ¨

  19. indirect force control . ... but our robot is position-controlled ? Split control into two components : Admittance control Allow position changes to improve force tracking Floating-base control Assuming force control, select reaction force to control the floating base 18

  20. visualization . Standing stabilization under external forces 19

  21. admittance control . 20 Commanded Desired Kinematic Kinematic Commanded Footstep Whole-body Walking Whole-body Targets Targets Joint Angles Locations Kinematic Pattern Admittance Generation Control Control Distributed Measured Foot Wrenches Foot Wrenches DCM DCM Control Observer

  22. strategies . Different strategies for different components of the net contact wrench : • CoP at each contact [Kaj+01b] • Pressure distribution [Kaj+10] • CoM admittance control [Nag99] This stabilizer implements : • Ankle strategy : yes • Hip strategy : translation, no rotation • Stepping strategy : no 21

  23. center-of-pressure control . • Rotate end-effector to move its CoP • Assumes compliance at contact : • Apply damping control : Figure adapted from [Kaj+01b] 7 7. Shuuji Kajita, Kazuhito Yokoi, Muneharu Saigo et Kazuo Tanie. « Balancing a Humanoid Robot Using Backdrive Concerned Torque Control and Direct Angular Momentum Feedback ». In : IEEE International Conference on Robotics and Automation . 2001. 22 τ = K e ( θ − θ e ) ˙ θ = A cop ( τ d − τ ) • Closed-loop behavior has τ → τ d

  24. pressure distribution control . Kaneko, Fumio Kanehiro et Kazuhito Yokoi. « Biped walking stabilization based on linear inverted 8. Shuuji Kajita, Mitsuharu Morisawa, Kanako Miura, Shin'ichiro Nakaoka, Kensuke Harada, Kenji 8 Figure adapted from [Kaj+10] 23 • Apply damping control : • Push down with foot that needs more • Net vertical force compensates pressure, lift the other one gravity ⇒ only need to control : ∆ f z = f Rz − f Lz * d z p * d ctrl p Lz Rz ˙ z ctrl = A z (∆ f zd − ∆ f z ) f f Rz Lz pendulum tracking ». In : IEEE/RSJ International Conference on Intelligent Robots and Systems . 2010.

  25. com admittance control • Closed-loop behavior : analysis is 9. Discussions with Pr T. Sugihara. 10 . only possible with delay or 24 • Accelerate CoM against ZMP error : c = ω 2 ( c − z ) • Recall that ¨ ¨ c = A c ( z − z d ) disturbance observer 9 measured desired 10. Ken'ichiro Nagasaka. « Whole-body Motion Generation for a Humanoid Robot by Dynamics Filters ». In : PhD thesis (1999). The University of Tokyo, in Japanese.

  26. choice of strategies . Which ones to choose ? End-effector strategies • CoP at each contact [Kaj+01b] • Pressure distribution [Kaj+10] ... are sufficient to control the net wrench, yet : CoM admittance control [Nag99] • uses other joints, e.g. hips 11. The effect is similar to Model ZMP Control [Tak+09]. 25 • helps recover from ZMP saturation 11

  27. com admittance in stair climbing . 26 Measured ZMP 0.3 Measured DCM 0.2 Desired DCM 0.1 Sagittal Coordinate (m) 0.0 -0.1 Desized ZMP 0.3 Maximum ZMP 0.2 Minimum ZMP 0.1 0.0 -0.1 Time (s) Figure 1 : Top : no CoM admittance control. Bottom : with A c = 20 [Hz 2 ].

  28. dcm control . 27 Commanded Desired Kinematic Kinematic Commanded Footstep Whole-body Walking Whole-body Targets Targets Joint Angles Locations Kinematic Pattern Admittance Generation Control Control Distributed Measured Foot Wrenches Foot Wrenches Estimated Desired DCM Measured Joint Angles DCM DCM DCM Desired CoM & Contacts Measured IMU Orientation Control Observer

  29. net wrench • Apply feedback control to it : mation . 2009. 12. Tomomichi Sugihara. « Standing stabilizability and stepping maneuver in planar bipedalism 12 This gives us the net wrench . . 28 yields best CoM-ZMP regulator [Sug09] requires less control input [Tak+09] • Assume control of z in ¨ c = ω 2 ( c − z ) • Controlling only the DCM ˙ ξ = ω ( ξ − z ) : ξ = ˙ ˙ ξ d + k p ( ξ d − ξ ) [ ] z = z d − 1 + k p ( ξ d − ξ ) ω based on the best COM-ZMP regulator ». In : IEEE International Conference on Robotics and Auto-

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend