vertical oscillation of protoplanetary disk pp disk 1d
play

Vertical Oscillation of Protoplanetary Disk (PP disk): 1D multi - PowerPoint PPT Presentation

Vertical Oscillation of Protoplanetary Disk (PP disk): 1D multi color Radiation Hydrodynammical Simulations Hot upper atmospheres and cold main disk oscillate in the opposite directions. Tomoyuki Hanawa Tetsuya Harada (Chiba U.) 1 13 7


  1. Vertical Oscillation of Protoplanetary Disk (PP disk): 1D multi color Radiation Hydrodynammical Simulations Hot upper atmospheres and cold main disk oscillate in the opposite directions. Tomoyuki Hanawa Tetsuya Harada (Chiba U.) 1 13 年 7 月 4 日木曜日

  2. PP disk@ 1.6 μ m(H)+345 GHz Lin+06 & Ohashi+07 taken with SMA overlaid on Fukagawa+02 (Subaru) Much better images will be taken with ALMA 2 13 年 7 月 4 日木曜日

  3. Williams & Cieza ’11 3 13 年 7 月 4 日木曜日

  4. Structure of Irradiated PP Disk Emission Scattered (mid IR) Star direct (optical) absorption Disk Two Layer Model Chiang & Goldreich ’97 4 Hot Surface Layer + Cool Main Disk T s >> T d 13 年 7 月 4 日木曜日

  5. 1D Grazing Recipe stellar scattered+emission z = E ′ ν + E ′′ E ν ν , F ′ ν + F ′′ = ν , F ν √ Z 1 r 2 + z 2 ! ν ( z ) = π R 2 ⇤ B ν ( T e ff ) − 2 E 0 ρ ( z 0 ) dz 0 exp κ ν r 2 + z 2 7 z z τ 00 ν τ 0 ν r ∂ E 00 + ∂ F 00  ✓ ν + 4 π B ν ◆ � − E 00 + κ ν ,s E 0 ν ν = ρ c κ ν ,a , ν ∂ t ∂ z c ∂ F ν ∂ t + ∂ � c 2 χ 00 � ν E 00 = − ρ c ( κ ν ,a + κ ν ,s ) F 00 ν , ν ∂ z M1 model Eq. 5 13 年 7 月 4 日木曜日

  6. Radiation Hydrodynamics ∂ρ ∂ assumption : T gas = T dust ∂ t + ∂ z ( ρ v z ) = 0 , + 1 ∂ v z ∂ v z P GMz + v z ∂ z + ( r 2 + z 2 ) 3 / 2 = 0 , ∂ t ∂ t ρ Z ∞ T ds dt = κ ν ,a [ cE ν − 4 π B ν ( T )] d ν . 0 ∂ E 00 + ∂ F 00  ✓ ν + 4 π B ν ◆ � − E 00 + κ ν ,s E 0 ν ν = ρ c κ ν ,a , α ν ∂ t ∂ z c ∂ F ν ∂ t + ∂ c 2 χ 00 � � ν E 00 = − ρ c ( κ ν ,a + κ ν ,s ) F 00 α ν , ∂ z ν speed reduction : α = 10 − 4 → c = 30 km s − 1 We solve the above partial differential equations explicitly . Our finite difference scheme is designed so that all the physical variables approach to the equilibrium ones in the limit of Δ t = ∞ . 6 13 年 7 月 4 日木曜日

  7. Upwind Reconstruction of the Radiation Field Kinetic Reconstruction (1 − β 2 ) 3 3 E ν (1 − β · n ) − 4 I ν ( n ) = 3 + β 2 8 π 3 f β = β F Kanno, Harada, & Hanawa = β 4 − 3 f 2 , � | F | 2 + 2013, PASJ in press 13 年 7 月 4 日木曜日

  8. Absorption & Emission within Cell 1 − e − ∆ τ i / 2 � S ν F � (+) e − ∆ τ i / 2 F (+) � = ν ,x,i +1 / 2 ,j,k + ν ,x,i +1 / 2 ,j,k 4 Flux at boundary absorption Flux at center Emission � � e − ∆ τ i : optical depth e − ∆ τ i / 2 F approaching to diffusion limit e − ∆ τ i when is large MUSCL for 2nd order in space ν ,xx,i +1 / 2 ,j,k ν ,xx,i +1 / 2 ,j,k e − ∆ τ i 1 − e − ∆ τ i / 2 � S ν P � (+) e − ∆ τ i / 2 P (+) � = ν ,x,i +1 / 2 ,j,k + ν ,x,i +1 / 2 ,j,k 6 � S 8 � 13 年 7 月 4 日木曜日

  9. 41 colors M * = 2.2 M o 0 . 1 µ m ≤ λ ≤ 1 mm T eff = 6250 K ∆ log λ = ∆ log ν = 0 . 1 R * = 3.8 R o Opacity: Draine (2003) λ (µm) 9 13 年 7 月 4 日木曜日

  10. Initial model (Equilibrium) Model 1: Σ = 7 g cm -2 Σ = 7 , 20 , 70 g cm − 2 r = 100 AU z max = 70AU, Δ z = 0.5 AU T ρ 10 13 年 7 月 4 日木曜日

  11. Model 1: overview 11 13 年 7 月 4 日木曜日

  12. Early density oscillation at z = 0.25 AU D 12 13 年 7 月 4 日木曜日

  13. density fluctuation at various heights Period = 420 yr, e -folding growth timescale = 2,000 yr. 13 13 年 7 月 4 日木曜日

  14. velocity perturbation node node Upper layers expands to receive more stellar light, when the disk main body is compressed. 14 13 年 7 月 4 日木曜日

  15. z = 0.25 AU thermal engine Pressure I PdV > 0 rotates clockwise Volume 15 13 年 7 月 4 日木曜日

  16. Variation in Radiative Flux @ z = 19.75 AU density min density max Z ∆ F ν d ν 16 13 年 7 月 4 日木曜日

  17. Excitation Mechanism Expanded Surface + Compressed Main Disk Excess Heating Compressed Surface + Compressed Main Disk Heating Deficiency 17 13 年 7 月 4 日木曜日

  18. Limit Cycle Oscillation 18 13 年 7 月 4 日木曜日

  19. Mass Ejection 10 -13 g cm -3 10 -15 g cm -3 ρ = 10 -14 g cm -3 19 13 年 7 月 4 日木曜日

  20. Light variation and mass ejection Doppler shift in CO lines The period is 2/3 of the Keplerian. 20 13 年 7 月 4 日木曜日

  21. High Surface Density ( Σ = 70 g cm -2 ) 21 13 年 7 月 4 日木曜日

  22. PV diagram Σ =70 g cm -2 Σ =7 g cm -2 almost adiabatic τ th � τ dyn 22 13 年 7 月 4 日木曜日

  23. Summary and Implications • PP disks are overstable against vertical oscillation with a node, since they have hot cold inner disk and hot surface layers. • The vertical oscillation affects appearance and evolution of PP disks. • 2D RHD simulations are desired. Flaring of an annulus may result in a 23 13 年 7 月 4 日木曜日

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend