dust evolution in protoplanetary disks effect on
play

Dust evolution in protoplanetary disks: Effect on observations of - PowerPoint PPT Presentation

Workshop on Magneto-Rotational I nstability in Protoplanetary Disks Dust evolution in protoplanetary disks: Effect on observations of dust emission H. Nomura 1 , Y. Aikawa 2 , Y. Nakagawa 2 (1. Kyoto Univ., 2. Kobe Univ.) 1 I ntroduction


  1. Workshop on Magneto-Rotational I nstability in Protoplanetary Disks Dust evolution in protoplanetary disks: Effect on observations of dust emission H. Nomura 1 , Y. Aikawa 2 , Y. Nakagawa 2 (1. Kyoto Univ., 2. Kobe Univ.)

  2. § 1 I ntroduction

  3. From protoplanetary disk to planets Dust size growth (e.g., Hayashi et al. 1985) & settling ↓ Planetesimal formation ↓ Collisional growth, Planet formation ↓ Gas dispersal → Planetary ( 東工大H P より) system formation

  4. Obs. of Dust Emission from PPDs (Furlan et al. 2006) Thermal dust emission 10 μ m S t a r D i s k Si feature Dust scattering (Kitamura et al. 2002) b y S u b a r u G G T a u I R D i s k O p t i c a l ・ S t a r ★ D u s t (Itoh et al. 2002)

  5. Dust Evolution & SED Quiescent disk Dust evolution in disks → SED model calculation 10 4 yr Unable to reproduce observations especially 10 7 yr in turbulent disks Planet formation Turbulent disk (Tanaka et al. 2005) t= 0yr t= 0yr 10 7 yr 10 7 yr (Dullemond & Dominik 2005)

  6. How to Supply Small Dust Grains? Turbulent disk , R= 1AU, t= 10 6 yr 1 μ m 1 μ m 1mm 1mm Δ v= 1km/ s Z= H 3.5H 0.25H Z= 0.25H Z= H Δ v= 1m/ s 2H a[ μ m] a[ μ m] → Fragmentation ? (Nomura et al. 2007) Supply of small dust grains to inner disk Vertical: cloud → disk midplane Radial: migrate with gas accretion flow

  7. § 2 Size growth, settling, & migration of dust particles and Disk model

  8. Dust size growth, settling, migration Coagulation eq. for dust particles ∂ ∂ ∂ φ 1 (R φ v ) ( φ v ) + + i i R i z n out ∂ ∂ ∂ t R R z V ff V acc ・ z − i 1 N 1 ∑ ∑ = − m β φ φ m φ β φ ★ − − i i j, j i j j i i i, j j 2 = = j 1 j 1 β i-j,j = π (a i-j + a j ) 2 Δ v p s /m i-j m j R sticking a j a i a i-j Δ v ( ) ( ) = − − ∂ ∂ 2 V φ Ω z/D φ D φ / z Turbulent z i z i 0 i ( ) = = + D ρ c /a D α c H/ 1 Ω /D mixing 0 s K gas s

  9. Velocity of Dust particles (V R &V Z ) Eq. of motion for dust a : dust radius d U GM = − − − ≈ D( U u ) * R 0 = D ρ c /a 3 dt R gas s Eq. of motion for gas ∇ P ∇ ⋅ d u ρ GM σ = − − − − gas + ≈ dust D( u U ) * R 0 3 dt ρ R ρ ρ gas gas gas ( ) Z V= U-v K 、 v= u-v K = − 2 V Ω /D z K ⎛ ⎞ ρ 2 2D Ω 2D ⎜ ⎟ = − gas + K V η ζ v ⎜ ⎟ R K + + + 2 2 2 2 ρ ρ D Ω D Ω ⎝ ⎠ gas dust K K ∂ ( ) 1 1 1 = − ζ R ρ α c h Ω gas s K ∂ 2 n out 2 ρ R R R Ω V ff z gas K V acc ・ ∂ p 1 1 1 gas = − η ∂ 2 2 ρ R R Ω ★ gas K R

  10. Gas Density Profile Hydrostatic equilibrium in z-direction dP ρ GM z = − = − ρ g * z + 2 2 3/2 dz (x z ) z P= ρ kT/ μ m p , M * = 0.5 M s x ★ • ⎡ ⎤ 1 / 2 ⎛ ⎞ 9 3GM M R = − 2 ⎜ ⎟ Σα c Ω * ⎢ 1 * ⎥ s0 3 4 8 π x ⎝ x ⎠ ⎢ ⎥ ⎣ ⎦ ・ M acc = 1x10 -8 M s / yr (= const.), α = 0.01

  11. Gas & Dust Temperature Profile Γ X + Γ pe + L gr - Λ line = 0 ) Gas : Thermal equi. ( Γ X : X-ray heating Λ line : Rad. cooling (Ly α , OI, CII, CO lines) (H, H 2 ionization) ★ Γ pe : FUV heating L gr : Gas-dust 中心星 (grain photoelectric) collisions ∞ ∞ ∫ ∫ ∫ = π d ν κ I d Ω 4 d ν κ B (T ) ν ν ν ν gr 0 0 Heating: Irradiation from central star Cooling: Dust thermal radiation

  12. § 3 Resulting Dust Size & Spatial Distributions

  13. Dust size distribution (only V z ) 1 μ m 1 μ m 1mm Quiescent 1mm R= 1AU R= 1AU 4 cm -3 n out = 10 6 yr t= 10 Z~ H 2H z coag 2 yr t= 10 R= 10AU R= 100AU Z~ H V ff n out 2H ・ z z coag ★ a[ μ m] a[ μ m] R t= 10 6 yr: large dust → settle, R → φ i / ρ dust,0

  14. Dust size distribution (only V z ) 1 μ m 1 μ m 1mm Turbulent 1mm R= 1AU R= 1AU 4 cm -3 n out = 10 6 yr t= 10 Z~ 0.25H H 2H 2 yr z coag t= 10 R= 10AU R= 100AU Z~ 0.25H H V ff n out 2H ・ z z coag ★ a[ μ m] a[ μ m] R Large grains exist due to turbulent mixing

  15. Small-dust/ Gas Ratio (only V z ) 4 cm -3 dn(R, z) n out = 10 ∫ = 2 A(R, z) π a da Small dust da 100AU f dust (R, z) = A(R, z)/A 0 (R, z) z fric z coag f dust Vertical velocity of dust 10AU z coag z fric dV GM z coag = − − z DV * z z fric z dz r 6 yr gas drag gravity t= 10 R= 1AU = D ρ c /a gas s Z/ R dust infall Quiescent Turbulent n out z Surface layer ( z fric < z , ρ gas : small ) R ★ V z : free-fall (only graviry) → f ∝1 / ρ g d u s t a s Middle layer ( z coag < z< z fric ) GM → f ∝1 / z gravity~ gas drag z = V * z d u s t Dr

  16. Small-dust/ Gas Ratio (only V z ) Small dust Total dust 100AU 100AU z fric z fric z coag z coag ρ dust f dust 10AU 10AU z coag z coag z fric z fric z coag z coag z fric z fric R= 1AU R= 1AU Z/ R Z/ R Quiescent Turbulent (Nomura et al. 2007) Midplane ( z< z coag , ρ dust : large ) ( ) , coag < τ ~ z/V τ τ , 2 τ ~ 1/ n π a Δ V sed z sed coag dust z → f dust : small (smaller in turbulent disk)

  17. Effect of radial migration: V R vs. V Z ⎛ ⎞ ρ 2 2D Ω 2D ⎜ ⎟ = − gas + V K η ζ v = D ρ c /a ⎜ ⎟ R K + + + 2 2 2 2 ρ ρ D Ω D Ω gas s ⎝ ⎠ gas dust K K ∂ ( ) 1 1 1 = − ζ R ρ α c h Ω V R V Z gas s K ∂ 2 2 ρ R R R Ω 1 μ m 1mm 1m gas K ∂ p 1 1 1 gas = − η Z= 2H Z= H ∂ 2 2 ρ R R Ω Z= 0.5H gas K ( ) Z = − 2 V Ω /D α = 0.01 z K n out V ff z α = 0.001 V acc ・ α = 0.0001 ★ α = 0 R= 1AU R a[ μ m] Amount of small dust grains ⇔ dust inflow in vertical & radial directions ⇔ n out & α

  18. Dust size distribution (V z & V z ) 4 cm -3 1 μ m n out = 10 1 μ m 1mm 1mm 6 yr V & V o n l y V R Z t= 10 R z= H R= 3AU α = 0.01 20AU 100AU o n l y V V & V R R Z R= 3AU α = 0.001 20AU 100AU a[ μ m] a[ μ m] n out = 10 4 cm -3 → accretion flow dominant if α > 10 -2~ -3

  19. § 4 Effects on Dust Continuum Emission

  20. Effect of dust inflow on SED Disk temp. & density + Dust evolution + Dust opacity + Rad. transfer → SED 6 yr t= 1x10 λ F λ [ergs/ cm 2 / s] Dark clouds dust Quiescent Obs. towards Turbulent CTTSs (D’Alessio et al. 2006) No dust inflow λ [ μ m] (n out = 0, α = 0) No dust inflow → Model cannot reproduce observations

  21. Effect of dust inflow on SED Disk temp. & density + Dust evolution + Dust opacity + Rad. transfer → SED 6 yr t= 1x10 λ F λ [ergs/ cm 2 / s] Dark clouds dust Quiescent Obs. towards Turbulent CTTSs (D’Alessio et al. 2006) dust inflow (n out = 10 4 cm -3 ) No dust inflow λ [ μ m] (n out = 0, α = 0) n out > 10 4 cm -3 or α > 10 -2~ -3 → consistent with observations

  22. Spatial distri. of dust emission λ = 450 μ m w/ o dust evolution λ = 850 μ m with dust evolution (Quiescent disk) R [AU] R [AU] Dust evolution → ALMA 5 σ detection limit F 850 μ m / F 450 μ m 50 antennas, 0”.1, 600s @ inner disk Dependence of spatial distribution of dust flux ratio on dust evolution → Observable by ALMA

  23. § 5 Summary Dust size growth, settling, and radial migration in protoplanetary disks Supply of small dust grains to inner disk Vertical: cloud → disk midplane ⇔ n out Radial: migrate with gas accretion ⇔ α SED model calculations n out > 10 4 cm -3 or α > 10 -2~ -3 → consistent with observations Effects on spatial distri. of dust emission : F 850 μ m / F 450 μ m @ inner disk → Observational diagnostics by ALMA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend