validated simulation of differential algebraic equations
play

Validated Simulation of Differential Algebraic Equations Julien - PowerPoint PPT Presentation

Validated Simulation of Differential Algebraic Equations Julien Alexandre dit Sandretto Alexandre Chapoutot Department U2IS Ensta ParisTech SWIM 2015-Praha Guaranteed simulation of differential equations Recall of Ordinary differential


  1. Validated Simulation of Differential Algebraic Equations Julien Alexandre dit Sandretto Alexandre Chapoutot Department U2IS Ensta ParisTech SWIM 2015-Praha

  2. Guaranteed simulation of differential equations Recall of Ordinary differential equations Given by y ′ = f ( y , t ) Initial Value Problems y ′ = f ( y , t ) , y ( 0 ) = y 0 Numerical simulation of IVPs till a time t n Compute y j ≈ y ( t j ) with t j ∈ { 0 , t 1 , . . . , t n } Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 2

  3. Guaranteed simulation of differential equations Validated simulation of IVPs Produces a list of boxes [ y j ] and [˜ y j ] such that ◮ y ( t j ) ∈ [ y j ] with t j ∈ { 0 , t 1 , . . . , t n } ◮ y ( t ) ∈ [˜ y j ] for all t ∈ [ t j , t j + 1 ] Method of Lohner 1. Find [˜ y j ] with Picard-Lindelof operator 2. Compute [ y j + 1 ] with a validated integration scheme : Taylor (Vnode-LP) or Runge-Kutta (DynIbex) ~ [y j ] [y j ] [y j+1 ] t t j t j+1 h j Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 3

  4. Differential Algebraic Equations Differential Algebraic Equations General form: implicit F ( t , y , y ′ , ... ) = 0, t 0 ≤ t ≤ t end y ′ = DAE 1 st order, y ′′ = DAE 2 nd , etc. (all DAEs can be rewritten in DAE of 1 st order) Hessenberg form: Semi-explicit (index: distance to ODE) ✎ ☞ ✎ ☞ � y ′ = f ( t , x , y ) � y ′ = f ( t , x , y ) index 1 : index 2 : 0 = g ( t , x , y ) 0 = g ( t , x ) ✍ ✌ ✍ ✌ y : state variables, x : algebraic variables Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 4

  5. Differential Algebraic Equations Differential Algebraic Equations General form: implicit F ( t , y , y ′ , ... ) = 0, t 0 ≤ t ≤ t end y ′ = DAE 1 st order, y ′′ = DAE 2 nd , etc. (all DAEs can be rewritten in DAE of 1 st order) Hessenberg form: Semi-explicit (index: distance to ODE) ✎ ☞ ✎ ☞ � y ′ = f ( t , x , y ) � y ′ = f ( t , x , y ) index 1 : index 2 : 0 = g ( t , x , y ) 0 = g ( t , x ) ✍ ✌ ✍ ✌ y : state variables, x : algebraic variables ⇒ Focus on Hessenberg index-1: Simulink, Modelica-like, etc. Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 4

  6. Differential Algebraic Equations Hessenberg index-1 ✎ ☞ � y ′ = f ( t , x , y ) index 1 : 0 = g ( t , x , y ) ✍ ✌ Some of dependent variables occur without their derivatives ! Different from ODE + constraint � y ′ = f ( t , y ) , t 0 ≤ t ≤ t end 0 = g ( y , y ′ ) ⇒ Direct with contractor approach Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 5

  7. Differential Algebraic Equations Hessenberg index-1 ✎ ☞ � y ′ = f ( t , x , y ) index 1 : 0 = g ( t , x , y ) ✍ ✌ Some of dependent variables occur without their derivatives ! Different from ODE + constraint � y ′ = f ( t , y ) , t 0 ≤ t ≤ t end 0 = g ( y , y ′ ) ⇒ Direct with contractor approach Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 5

  8. Differential Algebraic Equations Hessenberg index-1 ✎ ☞ � y ′ = f ( t , x , y ) index 1 : 0 = g ( t , x , y ) ✍ ✌ Some of dependent variables occur without their derivatives ! Different from ODE + constraint � y ′ = f ( t , y ) , t 0 ≤ t ≤ t end 0 = g ( y , y ′ ) ⇒ Direct with contractor approach Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 5

  9. Differential Algebraic Equations A basic example System in Hessenberg index-1 form y ′ = y + x + 1 � y ( 0 ) = 1 . 0 and x ( 0 ) = 0 . 0 ( y + 1 ) ∗ x + 2 = 0 Simulation ⇒ stiffness (in general) Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 6

  10. Differential Algebraic Equations Validated simulation of a DAE As for ODE: a list of boxes [ y i ] and [˜ y i ] such that ◮ y ( t i ) ∈ [ y i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ y ( t ) ∈ [˜ y i ] for all t ∈ [ t i , t i + 1 ] But in addition: a list of boxes [ x i ] and [˜ x i ] such that ◮ x ( t i ) ∈ [ x i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ x ( t ) ∈ [˜ x i ] for all t ∈ [ t i , t i + 1 ] Both validate ◮ y ′ ( t i ) ∈ f ( t i , [ x i ] , [ y i ]) ◮ ∃ x ∈ [ x i ] , ∃ y ∈ [ y i ] : g ( t i , x , y ) = 0 ◮ y ′ ( t ) ∈ f ( t , [˜ x i ] , [˜ y i ]) , ∀ t ∈ [ t i , t i + 1 ] ◮ ∀ t ∈ [ t i , t i + 1 ] , ∃ x ∈ [˜ x i ] , ∃ y ∈ [˜ y i ] : g ( t , x , y ) = 0 Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 7

  11. Differential Algebraic Equations Validated simulation of a DAE As for ODE: a list of boxes [ y i ] and [˜ y i ] such that ◮ y ( t i ) ∈ [ y i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ y ( t ) ∈ [˜ y i ] for all t ∈ [ t i , t i + 1 ] But in addition: a list of boxes [ x i ] and [˜ x i ] such that ◮ x ( t i ) ∈ [ x i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ x ( t ) ∈ [˜ x i ] for all t ∈ [ t i , t i + 1 ] Both validate ◮ y ′ ( t i ) ∈ f ( t i , [ x i ] , [ y i ]) ◮ ∃ x ∈ [ x i ] , ∃ y ∈ [ y i ] : g ( t i , x , y ) = 0 ◮ y ′ ( t ) ∈ f ( t , [˜ x i ] , [˜ y i ]) , ∀ t ∈ [ t i , t i + 1 ] ◮ ∀ t ∈ [ t i , t i + 1 ] , ∃ x ∈ [˜ x i ] , ∃ y ∈ [˜ y i ] : g ( t , x , y ) = 0 Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 7

  12. Differential Algebraic Equations Validated simulation of a DAE As for ODE: a list of boxes [ y i ] and [˜ y i ] such that ◮ y ( t i ) ∈ [ y i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ y ( t ) ∈ [˜ y i ] for all t ∈ [ t i , t i + 1 ] But in addition: a list of boxes [ x i ] and [˜ x i ] such that ◮ x ( t i ) ∈ [ x i ] with t i ∈ { 0 , t 1 , . . . , t n } ◮ x ( t ) ∈ [˜ x i ] for all t ∈ [ t i , t i + 1 ] Both validate ◮ y ′ ( t i ) ∈ f ( t i , [ x i ] , [ y i ]) ◮ ∃ x ∈ [ x i ] , ∃ y ∈ [ y i ] : g ( t i , x , y ) = 0 ◮ y ′ ( t ) ∈ f ( t , [˜ x i ] , [˜ y i ]) , ∀ t ∈ [ t i , t i + 1 ] ◮ ∀ t ∈ [ t i , t i + 1 ] , ∃ x ∈ [˜ x i ] , ∃ y ∈ [˜ y i ] : g ( t , x , y ) = 0 Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 7

  13. Approach to simulate DAE with guarantee Based on Lohner two-step approach Step 1- A priori enclosure of state and algebraic variables How find the enclosure [˜ x ] on integration step ? Assume that ∂ g ∂ x is locally reversal we are able to find the unique x = ψ ( y ) (implicit function theorem), and then: y ′ = f ( ψ ( y ) , y ) and finally we could apply Picard-Lindelof to prove existence and uniqueness , but... Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 8

  14. Approach to simulate DAE with guarantee Based on Lohner two-step approach Step 1- A priori enclosure of state and algebraic variables How find the enclosure [˜ x ] on integration step ? Assume that ∂ g ∂ x is locally reversal we are able to find the unique x = ψ ( y ) (implicit function theorem), and then: y ′ = f ( ψ ( y ) , y ) and finally we could apply Picard-Lindelof to prove existence and uniqueness , but... ✞ ☎ ψ is unknown ! ✝ ✆ Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 8

  15. Approach to simulate DAE with guarantee Based on Lohner two-step approach Step 1- A priori enclosure of state and algebraic variables Solution If we are able to find [˜ x ] such that for each y ∈ [˜ y ] , ∃ ! x ∈ [˜ x ] : g ( x , y ) = 0, then ∃ ! ψ on the neighborhood of [˜ x ] , and the solution of DAE ∃ ! in [˜ y ] (Picard with [˜ x ] as a parameter) A novel operator Picard-Krawczyk PK : � P ([˜ � � [˜ � y ] , [˜ x ]) y ] If ⊂ Int then ∃ ! solution of DAE K ([˜ y ] , [˜ x ]) [˜ x ] ◮ P a Picard-Lindelof for y ′ ∈ f ([˜ x ] , y ) ◮ K a parametrized preconditioned Krawczyk operator for g ( x , y ) = 0 , ∀ y ∈ [˜ y ] Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 9

  16. Approach to simulate DAE with guarantee Based on Lohner two-step approach Step 1- A priori enclosure of state and algebraic variables Solution If we are able to find [˜ x ] such that for each y ∈ [˜ y ] , ∃ ! x ∈ [˜ x ] : g ( x , y ) = 0, then ∃ ! ψ on the neighborhood of [˜ x ] , and the solution of DAE ∃ ! in [˜ y ] (Picard with [˜ x ] as a parameter) A novel operator Picard-Krawczyk PK : � P ([˜ � � [˜ � y ] , [˜ x ]) y ] If ⊂ Int then ∃ ! solution of DAE K ([˜ y ] , [˜ x ]) [˜ x ] ◮ P a Picard-Lindelof for y ′ ∈ f ([˜ x ] , y ) ◮ K a parametrized preconditioned Krawczyk operator for g ( x , y ) = 0 , ∀ y ∈ [˜ y ] Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 9

  17. Approach to simulate DAE with guarantee Based on Lohner two-step approach Step 2- Contraction of state and algebraic variables (at t + h ) Two contractors in a fixpoint: ◮ Contraction of [ y i + 1 ] (init [˜ y i ] ) ◮ [˜ x i ] as a parameter of function f ( t , x , y ) ⇒ ODE (stiff + interval parameter) ⇒ Radau IIA order 3 (fully Implicit Runge-Kutta, A-stable, efficiency for stiff and interval parameters) ◮ Contraction of [ x i + 1 ] (init [˜ x i ] ) ◮ [ y i + 1 ] as a parameter of function g ( x , y ) ⇒ Constraint solving ⇒ Krawczyk + forward/backward (+ any other constraints, from physical context or Pantelides algorithm) Julien Alexandre dit Sandretto - Validated Simulation of DAE June 10, 2015- 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend