v ub from qcd sum rules on the light cone
play

| V ub | from QCD Sum Rules on the Light-Cone Patricia Ball IPPP - PowerPoint PPT Presentation

| V ub | from QCD Sum Rules on the Light-Cone Patricia Ball IPPP , Durham CKM06, 14 December 2006 Based on Ball/Zwicky, hep-ph/0406232; Ball, hep-ph/0611108. Theory Input for Semileptonic Decays Form factors: ( p ) | u (1


  1. | V ub | from QCD Sum Rules on the Light-Cone Patricia Ball IPPP , Durham CKM06, 14 December 2006 Based on Ball/Zwicky, hep-ph/0406232; Ball, hep-ph/0611108.

  2. Theory Input for Semileptonic Decays Form factors: � π ( p ) | ¯ uγ µ (1 − γ 5 ) b | B ( p + q ) � ( q + 2 p ) µ f + ( q 2 ) + m 2 B − m 2 π f 0 ( q 2 ) − f + ( q 2 ) � � = q µ q 2 1 0 ≤ q 2 ≤ ( m B − m π ) 2 m 2 B − m 2 � � ← → m π ≤ E π ≤ π 2 m B 0 ≤ q 2 ≤ 26 . 4 GeV 2 ← → 0 . 14 GeV ≤ E π ≤ 2 . 6 GeV Theoretical methods: lattice → J. Flynn’s talk dispersive constraints → I. Stewart’s talk QCD sum rules on the light-cone → this talk! – p.1

  3. QCD Sum Rules on the Light-Cone Basic quantity: correlation function: � biγ 5 d ](0) | 0 � LCE T ( n ) uγ µ b ]( y )[ m b ¯ d 4 ye iqy � π ( p ) | T [¯ � ⊗ φ ( n ) i = π H n φ ( n ) π : π distribution amplitudes (DAs) T ( n ) H : perturbative amplitudes n : twist LCE: light-cone expansion m 2 � � B f B f + ( q 2 ) = 2 p µ + higher poles and cuts + . . . m 2 B − p 2 B B meson described by Euclidean current + plus analytical continuation – p.2

  4. QCD Sum Rules on the Light-Cone Features of LCSRs: terms in LCE ordered in powers of 1 /m b → need to include higher-twist terms ( n > 2 ) � T ( n ) ⊗ φ ( n ) implies factorization – valid at higher twist? π H calculate O ( α s ) , known for T2 ( π (Khodjamirian et al. 97, Ball et al. 97) , ρ (Ball/Braun 98) ) T3 ( π (Ball/Zwicky 2001) ) → factorization OK use standard SR techniques: Borel-transformation, continuum model introduce irreducible systematic uncertainty ∼ 10% – p.3

  5. QCD Sum Rules on the Light-Cone Ball/Zwicky 04: f + (0) = 0 . 258 ± 0 . 031 f � , f o , f T for Π 0.9 with theory input for 0.8 leading-twist π distribution 0.7 amplitude φ π ;2 0.6 0.5 Ball/Zwicky 05: constrain 0.4 φ π ;2 from experimental q 2 0.3 spectrum of B → πeν : 14 q 2 2 4 6 8 10 12 f + (0) ≈ 0 . 27 and BZ 04 | V ub | = (3 . 2 ± 0 . 4) · 10 − 3 Results for B → ρeν also available — but less experimental information. – p.4

  6. Theory Assisted by Experiment 0.14 0.12 0.1 δ B / B 0.08 2006 BaBar results for q 2 0.06 spectrum in B → πeν in 0.04 12 bins (up from 5 bins in 0.02 2005) 0. 5. 10. 15. 20. q 2 [GeV 2 ] Strategy: Parametrise form factor, fit to data, extract | V ub | f + (0) . – p.5

  7. Form Factor Parametrisations Becirevic/Kaidalov (BK) : f + (0) f + ( q 2 ) = � , 1 − q 2 /m 2 1 − α BK q 2 /m 2 � � � B ∗ B where α BK determines the shape of f + and f + (0) the normalisation; ▽ – p.6

  8. Form Factor Parametrisations Becirevic/Kaidalov (BK) : f + (0) f + ( q 2 ) = � , 1 − q 2 /m 2 1 − α BK q 2 /m 2 � � � B ∗ B where α BK determines the shape of f + and f + (0) the normalisation; Ball/Zwicky (BZ): � � rq 2 /m 2 1 f + ( q 2 ) = f + (0) B ∗ + , 1 − q 2 /m 2 1 − q 2 /m 2 1 − α BZ q 2 /m 2 � � � � B ∗ B ∗ B with the two shape parameters α BZ , r and the normalisation f + (0) ; BK is a variant of BZ with α BK := α BZ = r . – p.6

  9. Form Factor Parametrisations the AFHNV parametrisation (Flynn et al.), based on an ( n + 1) -subtracted Omnes representation of f + : n 1 � α i ( q 2 ) , f + ( q 2 ) n ≫ 1 � f + ( q i ) 2 ( s th − q 2 � = i ) s th − q 2 i =0 n s − s j s th = ( m B + m π ) 2 ; � with α i ( s ) = , s i − s j j =0 ,j � = i the shape parameters are f + ( q 2 i ) /f + ( q 2 0 ) with q 2 0 ,...n the subtraction points; the normalisation is given by f + (0) . – p.7

  10. Form Factor Parametrisations the BGL parametrisation based on analyticity of f + : ∞ 1 0 )] k , � f + ( q 2 ) = a k ( q 2 0 )[ z ( q 2 , q 2 k a 2 � k ≤ 1 , P ( q 2 ) φ ( q 2 , q 2 0 ) k =0 0 ) = { ( m B + m π ) 2 − q 2 } 1 / 2 − { ( m B + m π ) 2 − q 2 0 } 1 / 2 z ( q 2 , q 2 { ( m B + m π ) 2 − q 2 } 1 / 2 + { ( m B + m π ) 2 − q 2 0 } 1 / 2 q 2 0 : free parameter, determines maximum | z | ; define 0 = 20 . 1 GeV 2 , | z | < 0 . 28 : q 2 BGLa : q 2 BGLb 0 = 0 , | z | < 0 . 52 systematic expansion in the small parameter z ; truncate at k max ; choose k max = 2 for BGLa and k max = 3 for BGLb . – p.8

  11. | V ub | f + (0) from data Param. | V ub | f + (0) Remarks (9 . 3 ± 0 . 3 ± 0 . 3) × 10 − 4 χ 2 BK min = 8 . 74 / 11 dof α BK = 0 . 53 ± 0 . 06 (9 . 1 ± 0 . 5 ± 0 . 3) × 10 − 4 χ 2 BZ min = 8 . 66 / 10 dof α BZ = 0 . 40 +0 . 15 − 0 . 22 , r = 0 . 64 +0 . 14 − 0 . 13 (9 . 1 ± 0 . 6 ± 0 . 3) × 10 − 4 χ 2 BGLa min = 8 . 64 / 10 dof (9 . 1 ± 0 . 6 ± 0 . 3) × 10 − 4 χ 2 BGLb min = 8 . 64 / 9 dof (9 . 1 ± 0 . 3 ± 0 . 3) × 10 − 4 χ 2 AFHNV min = 8 . 64 / 8 dof from B − → π − π 0 (Arnesen et al.) (8 . 0 ± 0 . 4) × 10 − 4 SCET (tree-level, no 1 /m b corrections) All parametrisations agree – model-independent result! – p.9

  12. Fitted Form Factor 1.04 f + ( q 2 ) /f BGLa ( q 2 ) f + ( q 2 ) + 6. 1.02 4. 1. 0.98 2. 0.96 0. 0. 5. 10. 15. 20. 25. 0. 5. 10. 15. 20. 25. q 2 [GeV 2 ] q 2 [GeV 2 ] Left panel: best-fit form factors f + as a function of q 2 . The line is an overlay of all five parametrisations. Right panel: best-fit form factors normalised to BGLa. Solid line: BK, long dashes: BZ, short dashes: BGLb, short dashes with long spaces: AFHNV. – p.10

  13. Results for | V ub | Procedure 1: take FF from theory calculation, fit to BK and extract | V ub | from experimental partial branching ratio ( q 2 ≤ 16 GeV 2 for LCSR, q 2 ≥ 16 GeV 2 for lattice) α BK = 0 . 63 +0 . 18 LCSR f + (0) = 0 . 26 ± 0 . 03 , − 0 . 21 | V ub | = (3 . 5 ± 0 . 6(th) ± 0 . 1(exp)) × 10 − 3 | V ub | f + (0) = (9 . 0 +0 . 7 − 0 . 6 ± 0 . 4) × 10 − 4 α BK = 0 . 56 +0 . 08 HPQCD f + (0) = 0 . 21 ± 0 . 03 , − 0 . 11 | V ub | = (4 . 3 ± 0 . 7 ± 0 . 3) × 10 − 3 | V ub | f + (0) = (8 . 9 +1 . 2 − 0 . 9 ± 0 . 4) × 10 − 4 α BK = 0 . 63 +0 . 07 f + (0) = 0 . 23 ± 0 . 03 , FNAL − 0 . 10 | V ub | = (3 . 6 ± 0 . 6 ± 0 . 2) × 10 − 3 | V ub | f + (0) = (8 . 2 +1 . 0 − 0 . 8 ± 0 . 3) × 10 − 4 – p.11

  14. Results for | V ub | Procedure 2: take FF from theory, fit to experimentally determined shape, BGLa , obtain f + (0) , extract | V ub | from full branching ratio. f + (0) = 0 . 26 ± 0 . 03 LCSR | V ub | = (3 . 5 ± 0 . 4(shape) ± 0 . 1( B )) × 10 − 3 HPQCD f + (0) = 0 . 21 ± 0 . 03 | V ub | = (4 . 3 ± 0 . 5 ± 0 . 1) × 10 − 3 FNAL f + (0) = 0 . 25 ± 0 . 03 | V ub | = (3 . 7 ± 0 . 4 ± 0 . 1) × 10 − 3 reduced theoretical uncertainty as shape of FF is fixed by experimental data reduced experimental uncertainty as total B ( B → πeν ) can be used – p.12

  15. Summary form factor calculations from QCD sum rules on the light-cone in mature shape no scope for major improvement LCSR predictions for small and moderate q 2 < 16 GeV 2 → LQCD predictions for large q 2 > 16 GeV 2 ← reduce error of | V ub | determination by fixing shape of form factor from experiment instead of theory data both LCSR and FNAL prefer small | V ub | ∼ 3 . 6 × 10 − 3 HPQCD points at larger | V ub | ∼ 4 . 3 × 10 − 3 UTangles gives | V ub | = (3 . 50 ± 0 . 18) × 10 − 3 How sure are we about the inclusive result? (both th. and exp.) – p.13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend