infrared finite effective charge of qcd
play

Infrared Finite Effective Charge of QCD Joannis Papavassiliou - PowerPoint PPT Presentation

Infrared Finite Effective Charge of QCD Joannis Papavassiliou Departament of Theoretical Physics and IFIC, University of Valencia CSIC, Spain Light Cone 2008, Mulhouse, France 7-11th July 2008 Joannis Papavassiliou Light Cone 2008 1/ 27


  1. Infrared Finite Effective Charge of QCD Joannis Papavassiliou Departament of Theoretical Physics and IFIC, University of Valencia – CSIC, Spain Light Cone 2008, Mulhouse, France 7-11th July 2008 Joannis Papavassiliou Light Cone 2008 1/ 27

  2. Outline of the talk Effective charge of QED (prototype) QCD effective charge in perturbation theory Field theoretic framework: Pinch Technique Beyond perturbation theory: Schwinger-Dyson equations and lattice Dynamical mass generation IR finite gluon propagator and effective charge The role of the quarks Conclusions Joannis Papavassiliou Light Cone 2008 2/ 27

  3. � ( q 2 � ) is defined from the vacuum �( q ) . � q � ( q ) = g � q �� �� � ( q ) = � i P ( q )�( q 2 ) �� �� Effective charge of QED (prototype) Textbook construction: �( q 2 ) = [ 1 + �( q 2 )℄ polarization e Π µν ( q ) = � 1 = Z + �( q 2 ) = Z A [ 1 + � 0 ( q 2 )℄ q q � 1 = 2 e = Z 2 and Z e = Z P q 2 � � ( q 2 ) = � 0 ( q 2 ) = e 2 �( q 2 ) = ) +�( q 2 ) 1 q 2 e 0 and 1 e e From QED Ward identity follows Z 1 A RG-invariant combination e 2 1 0 Joannis Papavassiliou Light Cone 2008 3/ 27

  4. Properties Gauge-independent (to all orders) Renormalization group invariant, � m 2 Universal (process-independent) 2 p p p 1 1 1 k 1 Non-trivial dependence on the masses m i of the particles in = the loop. Reconstruction from physical amplitudes, using p p p 2 2 2 k 2 = 4 � optical theorem and dispersion relations. � ( q 2 ) ! � e 2 b log ( q 2 = m 2 ) = � 2 n f [ n f = number of fermion flavors]. For q 2 i , the effectice charge coincides with the running coupling (solution of RG equation). e 2 1 f 1 where b 6 Joannis Papavassiliou Light Cone 2008 4/ 27

  5. 6 = Z 2 in general) � ( q ) depends on the gauge-fixing parameter already at �� QCD effective charge in perturbation theory Ward identities replaced by Slavnov-Taylor identities k + q k + q involving ghost Green’s functions. ( Z 1 q q q q 1 � ( q ) = � � � � �� + 2 k k one-loop (a) (b) 2 p 1 p 1 p 1 k 1 Optical theorem does not hold for individual Green’s 6 = p p p 2 2 2 k 2 functions Joannis Papavassiliou Light Cone 2008 5/ 27

  6. " # � k � ( 0 ) � ! � ( k ) = � ( 1 � � ) k Pinch Technique �� �� Diagrammatic rearrangement of perturbative " # expansion (to all orders) gives rise to effective + n ( 0 ) � k � � k � Green’s functions with special properties . � ! � ( k ) = � n �� �� J. M. Cornwall , Phys. Rev. D 26 , 1453 (1982) J. M. Cornwall and J.P. , Phys. Rev. D 40 , 3474 (1989) D. Binosi and J.P. , Phys. Rev. D 66 , 111901 (2002). � � = ( k = + p = � m ) � ( p = � m ) � 1 In covariant gauges: � 1 i � 1 g = ( k + p ) � S ( p ) ; k 2 k 2 1 In light cone gauges: i g k 2 nk k S 0 0 Joannis Papavassiliou Light Cone 2008 6/ 27

  7. Pinch Technique rearrangement pinch ✲                                 pinch   ✲                                  pinch ✲ � ∆ Joannis Papavassiliou Light Cone 2008 7/ 27

  8. Gauge-independent self-energy + + b h � �i �( q 2 ) = + + = b � ( q ) �� + bg 2 ln � 2 = 11 C A = 48 � 2 � -function � = � bg 3 ) in the absence of quark loops. 1 q 2 q 2 1 first coefficient of the QCD b ( Joannis Papavassiliou Light Cone 2008 8/ 27

  9. � � � � 1 � 1 e � ( p 1 ; p 2 ) = ( p 2 ) � S ( p 1 ) � � � � � 1 � 1 e � ( q 1 ; q 2 ; q 3 ) = � ( q 2 ) � � ( q 3 ) ��� �� �� = ) easy to calculate Simple, QED-like Ward Identities , instead of Slavnov-Taylor Identities, to all orders q I g S abc gf abc q I 1 Profound connection with Background Field Method D. Binosi and J.P. , Phys. Rev. D 77 , 061702 (2008); arXiv:0805.3994 [hep-ph] � Π µν ( q ) = + q q q q Joannis Papavassiliou Light Cone 2008 9/ 27

  10. � 1 = 2 b b b = ; Z g = b b = ) RG invariant combination � 0 ( q 2 ) = g 2 �( q 2 ) Restoration of: ( � ) = 4 � � ( q 2 ) = = + bg 2 ( � ) ln ( q 2 =� 2 ) � b ln ( q 2 = � 2 ) Abelian Ward identities Z 1 Z 2 Z A g 2 0 For large momenta q 2 , define the RG-invariant effective charge of QCD, g 2 1 1 4 Strong version of optical theorem J.P., E. de Rafael and N.J.Watson, Nucl. Phys. B 503 , 79 (1997) Joannis Papavassiliou Light Cone 2008 10/ 27

  11. Beyond perturbation theory ... Joannis Papavassiliou Light Cone 2008 11/ 27

  12. Non-perturbative tools Lattice QCD (discretization of space-time) Schwinger-Dyson equations (continuous approach) k + q q ( a 2 ) ( a 4 ) ( a 1 ) ( a 3 ) k k, σ k ) − 1 = ( H σν ( k, q ) = H (0) q, ν σν + ( ) − 1 + p p p p + k k + q A.C. Aguilar, D. Binosi, J. P. , arXiv:0802.1870 [hep-ph], Phys. Rev. D (in press) Joannis Papavassiliou Light Cone 2008 12/ 27

  13. � � ( q ) j = 0 �� ( a 1 )+( a 2 ) Transversality enforced loop-wise in SD equations k k + q → → β, x σ, e ρ, c σ, d The gluonic contribution → → → → q q q q 1 1 � I Γ 2 2 µ, a ν, b µ, a ν, b q � � ( q ) j = 0 α, c �� ( b 1 )+( b 2 ρ, d ) ( a 2 ) k ← ( a 1 ) k → k + q → c c c ′ d The ghost contribution → → q → → q q q � I Γ µ, a µ, a ν, b ν, b q ( b 2 ) x x ′ k ← ( b 1 ) Joannis Papavassiliou Light Cone 2008 13/ 27

  14. �( q 2 ) = [ 1 + �( q 2 )℄ �( q 2 ) has a pole at q 2 = 0 the vector meson is massive , Dynamical mass generation: Schwinger mechanism in 4-d � 1 = q 2 1 q 2 If even though it is massless in the absence of interactions. J. S. Schwinger, Phys. Rev. 125 , 397 (1962); Phys. Rev. 128 , 2425 (1962). Requires massless, longitudinally coupled , Goldstone-like poles Such poles can occur dynamically , even in the absence of canonical scalar fields. Composite excitations in a strongly-coupled gauge theory. R. Jackiw and K. Johnson, Phys. Rev. D 8 , 2386 (1973) J. M. Cornwall and R. E. Norton, Phys. Rev. D 8 (1973) 3338 E. Eichten and F. Feinberg, Phys. Rev. D 10 , 3254 (1974) Joannis Papavassiliou Light Cone 2008 14/ 27

  15. Ansatz for the vertex � � � e � = � + i q � ( k + q ) � � ( k ) ; ��� ��� �� �� = + + . . . + 1 /q 2 pole � � � � 1 � 1 e � ( q 1 ; q 2 ; q 3 ) = gf abc � ( q 2 ) � � ( q 3 ) ��� �� �� Gauge-technique Ansatz for the full vertex: � 1 � 1 = q 2 , instrumental for � ( 0 ) 6 = 0 I q 2 Satisfies the correct Ward identity abc q I 1 Contains longitudinally coupled massless bound-state poles Joannis Papavassiliou Light Cone 2008 15/ 27

  16. Z Z � 1 � ( q 2 ) = + c 1 �( k )�( k + q ) f 1 ( q ; k ) + c 2 �( k ) f 2 ( q ; k ) � � Z ( p � k ) 2 System of coupled SD equations � 1 ( p 2 ) = + c 3 � �( k ) D ( p + k ) ; q 2 k k p 2 p 2 D k 2 k Renormalize Solve numerically Joannis Papavassiliou Light Cone 2008 16/ 27

  17. Gluon propagator (Landau gauge) I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, PoS LATTICE, 290 (2007). P. O. Bowman et al., Phys. Rev. D 76 , 094505 (2007) A. Cucchieri and T. Mendes, PoS LATTICE, 297 (2007). Joannis Papavassiliou Light Cone 2008 17/ 27

  18. Ghost propagator No power-law enhancement Joannis Papavassiliou Light Cone 2008 18/ 27

  19. The physical picture = m ( q 2 ) Dynamical generation of an infrared cutoff . L QCD . � in J. M. Cornwall, Phys. Rev. D 26 , 1453 (1982); A.C.Aguilar, A.A.Natale and P.S.R. da Silva, Phys. Rev. Lett. 90 , 152001 (2003); A. C.Aguilar and J.P., JHEP 0612 , 012 (2006);. A.C.Aguilar, D. Binosi, J.P., arXiv:0802.1870 [hep-ph], Phys. Rev. D (in press). Acts as an effective “mass” for the gluons. Not hard but momentum dependent mass m Drops off “sufficiently fast” in the UV. Eur.Phys.J.A35:189-205 (2008) . A. C. Aguilar and J.P., Does not induce to a term m 2 A 2 The local gauge symmetry remains exact . Joannis Papavassiliou Light Cone 2008 19/ 27

  20. The physical picture ... = ) Finite threshold for popping The “mass” is not directly measurable. Must be related to glueball masses, string tension, and condensates . J. M. Cornwall, Phys. Rev. D 26 , 1453 (1982) Phys. Rev. D 44 , 26 (1991) . M.Lavelle, = ) m ( 0 ) = 500 � 200 MeV Potential energy of a pair of heavy, static sources in the adjoint (adjoint Wilson Loop ). Flux tube formed dynamical gluons out of the vacuum. C. Bernard , Nucl. Phys. B 219 :341,1983 Bag Model : Gluon production requires a net energy cost because of confinement. Acts like a constituent quark mass John F. Donoghue , Phys.Rev.D29:2559,1984 Phenomenological studies F.Halzen, G.I.Krein and A.A.Natale, Phys. Rev. D 47 , 295 (1993). G.Parisi and R.Petronzio, Phys. Lett. B 94 , 51 (1980). A.C.Aguilar, A.Mihara and A.A.Natale, Phys. Rev. D 65 , 054011 (2002). Joannis Papavassiliou Light Cone 2008 20/ 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend