using the double pulse drive technique
play

using the double-pulse drive technique Ceri. M. Brenner, PhD student - PowerPoint PPT Presentation

Modification of laser driven ion beams by using the double-pulse drive technique Ceri. M. Brenner, PhD student University of Strathclyde Central Laser Facility, RAL 4 th EMMI workshop on plasma physics May 2011, Darmstadt Ion acceleration


  1. Modification of laser driven ion beams by using the double-pulse drive technique Ceri. M. Brenner, PhD student University of Strathclyde Central Laser Facility, RAL 4 th EMMI workshop on plasma physics May 2011, Darmstadt

  2. Ion acceleration driven by a double-pulse drive configuration How is it useful? What is it? How does it work? Experimental results

  3. Laser-plasma accelerators Compact, bright sources of: • High energy electrons • Gamma rays • XUV and x-ray radiation • Ions

  4. Applications E p > ~ 100 MeV Ion beam cancer therapy Proton probing (field measurements) Radiography (density measurements) Injection into conventional accelerators Production of isotopes Fast ignition fusion Proton heating Industrial (lithography) E p ~ 10 MeV

  5. Applications E p > ~ 100 MeV Ion beam cancer therapy Proton probing (field measurements) Radiography (density measurements) High flux of medium energy (3-15 MeV) Injection into conventional protons accelerators Production of isotopes Fast ignition fusion Proton heating Industrial (lithography) E p ~ 10 MeV

  6. Double pulse mechanism Ponderomotive electron Target Normal Sheath acceleration Acceleration (TNSA) plasma Electron sheath - + - - + + + - - + + + - + - + + + - - + - + Protons (and other ions) (a) (b) (c) time

  7. Multi-Pulse Sheath Acceleration (MPSA) “Spectral control in proton acceleration with multiple laser pulses” , A.P.L.Robinson et al, Plasma Phys. Control. Fusion 49 (2007) 373 – 384 Vlasov PIC Proton energy (MeV) Proton energy (MeV) single drive pulse double drive pulse

  8. Multi-Pulse Sheath Acceleration (MPSA) p p /m p c p p /m p c • controlled initial pulse initiates TNSA of ions and protons • density modulation of protons builds up ahead carbon front • increase in T e caused by 2 nd (main) drive pulse • surge of higher energy protons across ion front • high accelerating fields at ion/proton boundary

  9. “Spectral enhancement in the double pulse regime of laser proton acceleration”, K.Markey et al, PRL, 105, 195008, (2010) 1 0.1:1 x3.3 enhancement Conversion efficiency (%) ratio 0.1 x2.5 enhancement 0.4:1 ratio 0.01 0 1 2 3 Pulse delay (ps) 100 µm Au foils, Vulcan Petawatt, high contrast (with plasma mirror)

  10. 1D PIC simulations t = t 0 -250fs • Protons • Ions

  11. 1D PIC simulations t = t 0 -150fs • Protons • Ions

  12. 1D PIC simulations t = t 0 -50fs • Protons • Ions

  13. 1D PIC simulations t = t 0 +50fs • Protons • Ions

  14. 1D PIC simulations t = t 0 +150fs • Protons • Ions

  15. 1D PIC simulations t = t 0 +250fs • Protons • Ions

  16. 1D PIC simulations t = t 0 +350fs • Protons • Ions Surge

  17. Analysis in progress, not yet publishable

  18. Recirculation and multi pulses? 100 µm

  19. Recirculation and multi pulses? L For L < τ L c/2 where L is 120 μ m for τ L ~ 800 fs 5 µm Recirculation of electrons

  20. Calibrated radiochromic film (RCF) stack I L1 ~ 3.2 x 10 18 W/cm 2 I L ~ 3.2 x 10 19 W/cm 2 and 45 ° I L2 ~ 2.9 x 10 19 W/cm 2 1.2 No prepulse Intensity (a.u.) 1 0.1:1, 1.5 ps 0.8 0.6 0.4 0.2 0 -3 -2 -1 0 1 Time (ps)

  21. Using thin foils to enhance conversion efficiency • 5 µm Au foils • Vulcan Petawatt • high contrast • ~180 J on target

  22. Using thin foils to enhance conversion efficiency > x 100 increase • 5 µm Au foils Analysis in progress, • Vulcan Petawatt • high contrast not yet publishable • ~180 J on target

  23. Development of MPSA technique Spectral enhancement using the double pulse technique demonstrating: • significant flux enhancement in the thin foil (refluxing) regime for lower energy protons • increase in laser-to-proton conversion efficiency compared to thicker foils Analysis in progress, not yet publishable

  24. Development of MPSA technique Spectral enhancement using the double pulse technique demonstrating: • significant proton flux enhancement in the thin foil (refluxing) regime for lower energy protons • increase in laser-to-proton conversion efficiency compared to thicker foils Future direction: • investigate the double pulse technique for ultrashort laser system parameters • conduct 2D PIC simulations to study the evolution of the sheath field on the rear surface

  25. Strathclyde : C.M. Brenner , R.J. Gray, G. Scott, P. Mckenna CLF, RAL : R.H.H. Scott, K. Markey , K.L. Lancaster, D. Neely , P.A. Norreys, I.O. Musgrave, A.P.L. Robinson, J.S. Green, M. Notley, Vulcan laser staff and CLF target fabrication teams GSI, Darmstadt : O. Deppert, M. Roth IPPLM, Poland : M. Rosinski, J. Badziak, J. Wolowski LULI : H.P. Schlenvoigt, S.D. Baton CELIA : C. Beaucourt, J.J. Santos York : J. Pasley IST Lisbon : K. Li, J.R. Davies TEI, Crete : S.M. Hassan, E. Clarke, M. Tatarakis DFO, Milan: D. Batani Thank you

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend