university of science and technology of china ustc
play

University of Science and Technology of China (USTC) Frankfurt - PowerPoint PPT Presentation

Atomic Spin Entanglement and Anyonic Statistics in Optical Lattices Zhen-Sheng Yuan University of Science and Technology of China USTC KTU, Dec 13, 2018@Kaiserslautern University of Science and Technology of China


  1. Atomic Spin Entanglement and Anyonic Statistics in Optical Lattices Zhen-Sheng Yuan (中国科大 苑震生) University of Science and Technology of China USTC KTU, Dec 13, 2018@Kaiserslautern

  2. University of Science and Technology of China (USTC) Frankfurt Beijing USTC, Hefei Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  3. University of Science and Technology of China (USTC) Peking USTC,Hefei Shanghai Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  4. Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  5. Shuai Chen Yu-Ao Chen Jian-Wei Pan 潘建伟 包小辉 陈凯 陈帅 陈宇翱 陆朝阳 徐飞虎 Zhen-Sheng Yuan Bo Zhao You-Jin Deng 彭承志 苑震生 赵博 邓友金 张强 张军 刘乃乐 Xing-Can Yao Hanning Dai 朱晓波 霍永恒 姚星灿 汪喜林 郁司夏 戴汉宁 陈腾云 江晓 印娟 任继刚 廖胜凯 李力 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  6. Introduction to our team Research field: quantum information processing with photons and atoms  Quantum communication Free space quantum communication Quantum memory and quantum repeater Metropolitan fiber quantum communication networks Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  7. Introduction to our team Research field: quantum information processing with photons and atoms  Quantum computation and simulation with Multi-photon entanglement Superconducting qubit Atom-atom entanglement Ultracold Bose gases (SOC) Ultracold Fermion mixture Ultracold molecule Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  8. Motivation: Quantum Information Processing Resource for QIP, Entangled states Ions: R. Blatt, C. Monroe Photons: Jian-Wei Pan Superconducters: Google, IBM, Intel Ions: Monz et al, PRL 106 , 130506 (2011); N. Friis et al, PRX 8, 021012 (2018); J Zhang et al, Nature 551, 601 (2017) Photons: X-L Wang et al, PRL 117, 210502 (2016); arXiv:1801.04043 Superconducting qubits: P. Roushan et al, Science 358, 1175 (2017) Google; N. Kalb et al, Science 356, 928 (2017), intel Qutech; IBM 49 qubits; Yale; Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  9. Scalability: atoms in optical lattice Optical lattice: an array of in-situ imaging: only one Spin exchange interaction: well coherently controlled atom trapped in a lattice generate spin-spin entanglement cold atoms Multi-atom entanglement! Vaucher et al , NJP (2008) Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  10. Scalability: fault tolerable qubits To overcome qubit errors in quantum computing  Error-correcting code • Shor, PRA 52, R2493 (1995) 9qubits • Steane, PRL 77, 793 (1996) 7qubits • Laflamme et al ., PRL 77, 198 (1996) 5qubits  Traditional concatenated codes require error rate < 2  10 -5 !  Protect quantum bits/gates at the physical level -- topological quantum computing • Kitaev, Ann. Phys. 303, 2 (2003); Ann. Phys. 321, 2 (2006) • Raussendorf et al ., Ann. Phys. 321, 2242 (2003) • Nayak et al ., RMP 80 (3): 1083 (2008)  Relax the error threshold rate from 10 -5 to 10 -2 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  11. Scalability: fault tolerable qubits Topological Quantum Computation Excited states ∆𝐹 Energy Gap ۧ |𝜔 Ground states Quantum gates--Braiding Anyons Protect qubits with energy gap  Anthony James Leggett: … no naturally occurring system is likely to have a Hamiltonian (for topological computing); Purpose- engineered systems of optical lattices or Josephson junction arrays (are promising candidates) Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  12. Kitaev Model: Toric code Protecting qubits with energy gap Hamiltonian: • Four-body interaction • Abelian Anyons: e , m excitaions Kitaev, Annals of Physics 303, 2 (2003) Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  13. Toric code -- Braiding 𝑨 𝜏 𝑘 m e 𝑌 𝜏 𝑘 e m m 𝑌 𝜏 𝑘 m Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  14. Toric code -- Braiding 𝑌 𝜏 4 𝑌 𝜏 3 e |𝜒 = | ۧ ۧ 𝑓, 𝑓, 𝑛, 𝑛 m m 3 4 ห𝜒 ′ = 𝑓 𝑗𝜚 | ۧ ൿ 𝑓, 𝑓, 𝑛, 𝑛 m m m m Topological phase 𝑓 𝑗𝜚 , 𝜚 = 𝜌 e No e -excitation, 𝜚 = 0 𝑌 𝜏 2 2 1 m m m 𝑌 𝜏 1 𝑌 𝜏 𝑘 m Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  15. Spin entanglement and anyonic statistics in OL Our experiment:  Manipulating superexchange in optical lattice  Creating entangled atom pairs  Manipulating four-body interaction, four-atom entanglement  Demonstrating anyonic statistics with plaquette units Entangled atom pairs Ring exchange and Toric code Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  16. Atoms in optical lattices Standing wave of light 3D optical lattice Bose-Hubbard model (BHM) J U J : nearest-neighbor tunneling 𝑉 : onsite interactions Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  17. Experimental setup MOT Vacuum chamber BEC Magnetic Transfer BEC Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  18. Prepare a 2D quantum gas with in-situ imaging Lat-Y Pancake-2 11 degree 87 Rb: Load into a pancake trap ۧ |𝐺 = 1, 𝑛 𝐺 = −1 SF to MI transition by BEC 2 × 10 5 atoms 𝑂 2D ~15000, 𝑈 2D =23(3) nK ramping up lattice depth • Objective: NA=0.48, resolution 2 μ m Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  19. Optical super-lattice | ۧ ۧ | ۧ ۧ ↓ = 5𝑇 Τ 1 2 | 𝐺 = 1, 𝑛 𝐺 = −1 ↑ = 5𝑇 Τ 1 2 | 𝐺 = 2, 𝑛 𝐺 = −2 𝑡 cos 2 2𝑙𝑦 + 𝜚 𝑦 + 𝑊 𝑚 cos 2 𝑙𝑦 Isolated double wells: 𝑊 𝑦 = 𝑊 Theory: Duan et al ., PRL 91, 090402 (2003) Experiment: Trotzky et al. , Science 319, 295 (2008) Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  20. Spin super-exchange: generating spin entanglement Interaction dominated 𝑉 ≫ 𝐾 , with pseudo spins: 𝐾 𝑓𝑦 ~ 4𝐾 2 /𝑉 ۧ Initial state: | ↑↓ is degenerate with ۧ | ↓↑ The spins will oscillate between the two configurations with a period of 1/ 𝐾 𝑓𝑦 Stop the oscillation by increasing the barrier to create spin entanglement 1 ۧ ۧ 2 | ↑↓ + | ↓↑ Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  21. Spin-dependent superlattices Normal super-lattice Spin-dependent superlattice angle between two V S polarization planes of + laser S V l | ۧ ۧ Τ | ۧ ۧ Τ ↑ = 5𝑇 Τ 1 2 | 𝐺 = 2, 𝑛 𝐺 = −2 , 𝑕 𝐺 = 1 2 ↓ = 5𝑇 Τ 1 2 | 𝐺 = 1, 𝑛 𝐺 = −1 , 𝑕 𝐺 = −1 2 Right Left well is well is higher higher 𝛼𝐶 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  22. Spin-dependent superlattices Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  23. Spin-dependent superlattices effective magnetic gradient caused by spin-dependent superlattice B 1 B 2 π pulse, ω L B 1 B 2 ω L ω R Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  24. Spin super-exchange: generating spin entanglement 4𝐾 2 𝑊 𝑗 𝑉 • Switch off effective magnetic gradient, | ↑↓  and | ↓↑  degenerate • Decrease 𝑊 𝑗  spin oscillation J/U =0.11, decay 120ms |   = V s =16Er s , V l =40Er l • Increase 𝑊 𝑗  Freeze entangled state How to detect entanglement? Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  25. Entanglement detection 1 Entangled state: 𝜔 = 2 ( ↑↓ + ↑↓ ) Spin-dependent collisional loss: identify | ↓↓  from 4 spin basis  Imaging spin-up atoms  Count N 1  π pulse  Merging and killing  Count N 2 𝑂 ↓↓ = 𝑂 𝑈𝑝𝑢𝑏𝑚 − 𝑂 1 − 𝑂 2 Identify | ↑↓  , | ↓↑  , | ↑↑  : transfer to | ↓↓  by left/right π pulse Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  26. Detection of entanglement Spin correlation curve Violation of CHSH type Bell’s inequality S = 2.21 ± 0.08 Dai et al., Nature Physics 12, 783 (2016) Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  27. 2D-optical superlattice BHM : J<<U Super-exchange: Ring-exchange: 𝐈 = 𝑲 ฀ 𝑻 𝟐 𝑻 𝟑 𝑻 𝟒 𝑻 4 isolated plaquettes B.Paredes & I.Bloch, PRA77,23603 (2008). Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  28. Ring-exchange interaction 𝑦 𝜏 3 𝑦 𝜏 4 𝑦 𝜏 2 𝑦 𝐵 𝑡 = −𝜏 1 4 th order perturbation to the BHM 𝐾 4 𝐼 (4) = 40 ෡ ൗ ~Hz 𝑉 3 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  29. 2D-optical superlattice BHM : J =200 Hz, U =2 kHz Super-exchange: 𝐾 2 𝑉 = 20 Hz ~ 1 nK 𝐾 𝑓𝑦 ∼ Ring-exchange: 𝐾 4 𝐈 = 𝑲 ฀ 𝑻 𝟐 𝑻 𝟑 𝑻 𝟒 𝑻 4 𝑉 3 = 0.2 Hz ~ 0.01 nK 𝐾 ฀ ∼ Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  30. Minimum toric code Hamiltonian Degenerate ring exchange Toric code model in subspace Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  31. Spectrum of the plaquette model Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  32. Site-resolved addressing: state initialization Effective magnetic gradient created by the spin-dependent superlattices Sawtooth-like, period of OL 𝐶 3 > 𝐶 4 = 𝐶 2 > 𝐶 1  𝐶 4 4 3 3 1 1 2 2 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  33. Ring Exchange Driven Oscillation Initial state = 1 |𝐵 − + |𝐵 + ۧ ۧ 2 Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

  34. Observation of ring exchange driven oscillation Count the populations of different states 𝜌 pulse Imaging, Dark 𝜌 pulse Imaging, Bright Z.-S. Yuan, KTU, DEC.13, 2018@Kaiserslautern

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend