universality of step bunching behavior in systems with
play

Universality of step bunching behavior in systems with non-conserved - PowerPoint PPT Presentation

Universality of step bunching behavior in systems with non-conserved dynamics Joachim Krug Institute for Theoretical Physics, University of Cologne Electromigration-induced step bunching on Si(111) [Yang, Fu & Williams 1996] M. Ivanov, JK,


  1. Universality of step bunching behavior in systems with non-conserved dynamics Joachim Krug Institute for Theoretical Physics, University of Cologne Electromigration-induced step bunching on Si(111) [Yang, Fu & Williams 1996] M. Ivanov, JK, Eur. Phys. J. B 85 (2012) 72

  2. Electromigration-induced step bunching on Si(111) Courtesy of V. Usov T = 1130 o C

  3. Temperature regimes B.J. Gibbons, S. Schaepe and J.P . Pelz, Surf. Sci. 600 (2006) 2417

  4. Temperature regimes F I 900 C II 1100 C III 1250 C • Regimes I and III: Step bunching for down-step current, consistent with Burton-Cabrera-Frank theory (non-transparent steps) • Regime II: Step bunching for up-step current, requires step transparency or other mechanism

  5. Levels of description D’ • Microscopic (Ehrlich-Schwoebel effect) Ehrlich & Hudda (1966) Energie ∆ E S Schwoebel & Shipsey (1966) 3D discrete ⇓ y j-1 • Mesoscopic (step dynamics) j j+1 Burton, Cabrera & Frank (1951) Stoyanov (1991) 1D discrete x ⇓ h • Macroscopic (continuum theory) Nozières (1987); Pimpinelli et al. (2002) 0D discrete x

  6. BCF-theory with sublimation and surface electromigration • diffusion D and desorption 1 / τ 1/τ D k + k − • asymmetric attachment rates k ± f S. Stoyanov, Jap. J. Appl. Phys. 30 , 1 (1991) electromigration force • stationary diffusion equation for adatom concentration n ( x ) on the terraces: D d 2 n dx 2 − Df dx − n dn D dn dx − Df k B T n | x = x i = ∓ k ± [ n − n eq ] | x = x i τ = 0 b.c.: k B T eq exp [ ∆ µ ( x i ) / k B T ] mit • repulsive step-step interactions: n eq ( x i ) = n 0 �� � 3 � ∆ µ ( x i ) � 3 l l � ≡ g ν i = − g − k B T x i + 1 − x i x i − x i − 1 g : interaction strength l = 1 : mean step spacing

  7. √ D τ diffusion length l D = l ± = D / k ± kinetic lengths • Length scales: ξ = k B T / f electromigration length x Attachment-limited regime: ξ ≫ l D ≫ l ± ≫ l i+1 x i x i−1 dx i � 1 − b ES l i + 1 + b ES � dt = ( 1 + g ν i ) + U ( 2 ν i − ν i + 1 − ν i − 1 )+ R − 1 l i 1 e 2 2 + b el 2 [ { 2 + g ( ν i + ν i + 1 ) } l i −{ 2 + g ( ν i + ν i − 1 ) } l i − 1 ] eq Ω , R e = n 0 , b el = ξ − 1 l 2 with l i = x i + 1 − x i , b ES = l − − l + gl 2 D D , U = τ l − + l + l − + l + l − + l + • Standard approximation: Neglect terms ∼ g ν i because g ∼ | tan θ | 3 ≪ 1

  8. • In the standard approximation the same set of equations describes step bunching by electromigration or ES-effect, in the presence of growth or sublimation Liu & Weeks 1998, JK et al. 2005, Popkov & JK 2005, 2006 dx i � 1 − b l i + 1 + b � + U ( 2 ν i − ν i + 1 − ν i − 1 ) , l i − 1 b = b ES + 2 b el dt = 2 2 • On the level of linear stability analysis, the neglected terms lead to an asymmetry between growth and sublimation Fok et al. 2007; Ivanov et al. 2010 b b 1 1 unstable stable stable 0 0 g g 1 1 6 6 unstable stable − 1 − 1 a ) b ) a) growth: unstable for b < 0 b) sublimation: unstable for b > 6 g • Full equations are conservative for growth but non-conservative for sublimation

  9. Continuum limit of the standard model J.K., V. Tonchev, S. Stoyanov, A. Pimpinelli: Phys. Rev. B 71 , 045412 (2005) dx i dt = 1 − b ( x i + 1 − x i )+ 1 + b x ( x i − x i − 1 ) i+1 x 2 2 i x i−1 + U ( 2 ν i − ν i + 1 − ν i − 1 ) ⇓ h ∂ h ∂ t + ∂ ∂ m ∂ 2 m 2 − b ∂ x + 3 U � � 2 m − 1 = − 1 ∂ x ∂ x 2 6 m 3 2 m m = ∂ h ∂ x > 0 x

  10. Continuum limit of the standard model J.K., V. Tonchev, S. Stoyanov, A. Pimpinelli: Phys. Rev. B 71 , 045412 (2005) dx i dt = 1 − b ( x i + 1 − x i )+ 1 + b x ( x i − x i − 1 ) i+1 x 2 2 i x i−1 + U ( 2 ν i − ν i + 1 − ν i − 1 ) ⇓ h ∂ h ∂ t + ∂ ∂ m ∂ 2 m 2 − b ∂ x + 3 U � � 2 m − 1 = − 1 ∂ x ∂ x 2 6 m 3 2 m m = ∂ h ∂ x > 0 x • destabilizing

  11. Continuum limit of the standard model J.K., V. Tonchev, S. Stoyanov, A. Pimpinelli: Phys. Rev. B 71 , 045412 (2005) dx i dt = 1 − b ( x i + 1 − x i )+ 1 + b x ( x i − x i − 1 ) i+1 x 2 2 i x i−1 + U ( 2 ν i − ν i + 1 − ν i − 1 ) ⇓ h ∂ h ∂ t + ∂ ∂ m ∂ 2 m 2 − b ∂ x + 3 U � � 2 m − 1 = − 1 ∂ x ∂ x 2 6 m 3 2 m m = ∂ h ∂ x > 0 x • destabilizing • stabilizing

  12. Continuum limit of the standard model J.K., V. Tonchev, S. Stoyanov, A. Pimpinelli: Phys. Rev. B 71 , 045412 (2005) dx i dt = 1 − b ( x i + 1 − x i )+ 1 + b x ( x i − x i − 1 ) i+1 x 2 2 i x i−1 + U ( 2 ν i − ν i + 1 − ν i − 1 ) ⇓ h ∂ h ∂ t + ∂ ∂ m ∂ 2 m 2 − b ∂ x + 3 U � � 2 m − 1 = − 1 ∂ x ∂ x 2 6 m 3 2 m m = ∂ h ∂ x > 0 x • destabilizing • stabilizing • symmetry breaking

  13. The shape of step bunches V. Popkov, JK, Europhys. Lett. 72 , 1025 (2005) h • Ansatz for moving step bunches: (S. Stoyanov) Ω h ( x , t ) = φ ( x − Vt ) − Ω t V • sum rule from mass conservation: Ω + V = 1 x ⇒ ODE for surface profile φ ( ξ ) and slope profile m = d φ / d ξ Ω ( ξ + ξ 0 − φ )+ b − m ′ 6 m 3 + 3 U � � 1 − 1 2 m ( m 2 ) ′′ = 0 , ξ = x − Vt m 2 produces solutions with speed V ∼ 1 / N for bunches containing N steps

  14. Comparison to discrete step dynamics 120 80 100 h( ξ ) 40 0 0 20 0 0 40 80 120 ξ • asymmetry between inflow and outflow region

  15. Experimental bunch shapes V. Usov, C.O. Coileain, I.V. Shvets, PRB 83 (2011) 155321 • Electromigration on Si(111) in regime III, T=1270 ◦ C

  16. Scaling laws A. Pimpinelli et al., PRL 88, 206103 (2002) • height and width: L N ∼ W α , α > 1 • minimal terrace size: l min ∼ W / N ∼ N − ( 1 − 1 / α ) N • coarsening: W N ∼ L ∼ t β Results of continuum analysis for moving bunches: α = 3 • W ≈ 4 . 1 × ( UN / b ) 1 / 3 , l min ≈ 2 . 37 × ( U / bN 2 ) 1 / 3 ⇒ • width of the first terrace in the bunch: l 1 ≈ ( 2 U / bN ) 1 / 3 • bunch motion only affects non-dimensional numerical prefactors

  17. Scaling behavior in electromigration experiments V. Usov, C.O. Coileain, I.V. Shvets, PRB 83 (2011) 155321 • Maximal slope y m = 1 / l min ∼ N 2 / 3 , f 1 / 3

  18. Conserved and non-conserved dynamics • Step equations of motion in the standard approximation are conservative, N − 1 ∑ i ˙ x i ≡ R e , but the full equations are not: dx i � 1 − b ES l i + 1 + b ES � dt = ( 1 + g ν i ) + U ( 2 ν i − ν i + 1 − ν i − 1 )+ R − 1 l i − 1 e 2 2 + b el 2 [ { 2 + g ( ν i + ν i + 1 ) } l i −{ 2 + g ( ν i + ν i − 1 ) } l i − 1 ] • Moreover, the non-conserved terms induced by electromigration and ES- effect have different structures. • Does this difference survive on the continuum level? • How does non-conservation affect dynamical features such as coarsening of step bunches?

  19. Continuum equation with non-conserved terms M. Ivanov, JK, Eur. Phys. J. B 85 (2012) 72 • The general form of the continuum equation reads � m ′ m 2 � ′′ m 2 � ′ � � ∂ h ∂ t + ∂ 6 m 3 + 3 U + 1 = 3 g � ′ − 3 gm 2 − m ′ � � − Φ b − J b ∂ x 2 m 6 m 3 2 2 � 1 � ′ J b = 2 b el + b ES Φ b = 3 gb ES ( m 2 ) ′ − 3 gb el m ′ , 2 m 2 m 2 • Analysis of moving bunch solutions in the absence of the red terms suggests upper bounds on bunch slope and bunch wavelength M. Ivanov, V. Popkov, JK, PRE 82 (2010) 011606 • To explore non-linear step dynamics in the general case we turn to numerical simulations of the discrete step equations

  20. Numerical study of non-conserved step equations • Simulation of M = 40 − 80 steps with periodic boundary conditions • Two types of initial conditions: – single large bunch – perturbed regular step train • Parameter ranges: model I: b el = 0 , b ES ∈ [ 0 , 1 ] , U ∈ [ 0 , 1 ] , g ∈ [ 0 , 1 ] Ivanov, Popkov, JK 2010 model II: b ES = 0 , b el ∈ [ 0 , 0 . 5 ] , U ∈ [ 0 , 0 . 5 ] , g ∈ [ 0 , 0 . 1 ] Ivanov, JK 2012 • New phenomena associated with non-conservation: – breakup of large bunches – arrested coarsening – periodic or chaotic switching between different numbers of bunches – dependence of final state on the initial condition

  21. Breakup of step bunches: Step trajectories -60 b) -80 -100 x ˜ -120 -140 -160 -180 11280 11300 11320 11340 11360 11380 11400 11420 11440 11460 time Model II: 80 steps, b el = 0 . 7 , U = g = 0 . 05

  22. Breakup of step bunches: Height profile 160 c) 150 140 130 h 120 110 100 6000 t.u. 11500 t.u. 90 13000 t.u. 15000 t.u. 80 -150 -100 -50 0 50 x ˜ Model II: 80 steps, b el = 0 . 7 , U = g = 0 . 05

  23. Arrested coarsening from random initial conditions: Maximal slope 8 b) 7 6 m max 5 4 3 2 1 0 0 1000 2000 3000 4000 5000 6000 7000 8000 time Model II: 40 steps, b el = 0 . 35 , U = 0 . 2 , g = 0 . 0 , 0 . 01 , 0 . 02 , 0 . 05 , 0 . 09

  24. Comparison of phase diagrams 0.5 a) 0.4 b el 0.3 0.2 lin. stab. 0.1 1 bunch 1 or 2 bunches 2 bunches 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 g Model II: 40 steps, U = 0 . 2 , fluctuating initial conditions

  25. Comparison of phase diagrams 1 0.9 a) 0.8 0.7 0.6 b 0.5 0.4 0.3 lin. stab. 1 bunch 0.2 1/2 bunches 1 or 2 bunches 0.1 2 bunches 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 g Model I: 40 steps, U = 0 . 2 , fluctuating initial conditions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend