unitary process discrimination with error margin
play

Unitary Process Discrimination with Error Margin DEX-SMI Workshop - PowerPoint PPT Presentation

Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui), M. Horibe (Fukui) and M. Hayashi


  1. Unitary Process Discrimination with Error Margin DEX-SMI Workshop on Quantum Statistical Inference March 2-4, 2009, National Institute of Informatics (NII), Tokyo A. Hayashi (Fukui) T. Hashimoto (Fukui), M. Horibe (Fukui) and M. Hayashi (Tohoku)

  2. Unitary process discrimination with error margin unitary process input output U U U ... 1 2 3 | φ> U | φ>=|φ > i i State discrimination {| φ i � ≡ U i | φ �} Inconclusive result (”I don’t know”) is allowed Maximize the success probability P success Margin on error probability P error < m m = 1 : minimum-error discrimination m = 0 : unambiguous discrimination Two solvable cases: { U 1 , U 2 } (two unitary processes) { T g } g ∈ G ( T g is a projective representation of a finite group G )

  3. Two unitary processes { U 1 , U 2 } First, fix input | φ � Two-state discriminaiton ρ 1 = | φ 1 �� φ 1 | , | φ 1 � ≡ U 1 | φ � ρ 2 = | φ 2 �� φ 2 | , | φ 2 � ≡ U 2 | φ � We assume the same occurrence probabilities POVM { E µ } µ =1 , 2 , 3 E 1 for ρ 1 , E 2 for ρ 2 , E 3 ≡ E ? for “I don’t know”, Phys. Rev. A78, 012333(2008) by A. Hayashi, T. Hashimoto and M. Horibe Joint probabilities The state is ρ a and measurement outcome is µ : P ρ a , E µ = tr [ E µ ρ a ]

  4. Strong error-margin conditions Success probability to be optimized � � p ◦ = 1 P ρ 1 , E 1 + P ρ 2 , E 2 2 Margin m on conditional error probabilities tr [ E 1 ρ 2 ] = tr [ E 1 ρ 1 ] + tr [ E 1 ρ 2 ] ≤ m P ρ 2 | E 1 tr [ E 2 ρ 1 ] P ρ 1 | E 2 = tr [ E 2 ρ 1 ] + tr [ E 2 ρ 2 ] ≤ m m = 1 ⇐ ⇒ Minimum error discrimination � � p ◦ = 1 � 1 − |� φ 1 | φ 2 �| 2 1 + 2 m = 0 ⇐ ⇒ Unambiguous discrimination p ◦ = 1 − |� φ 1 | φ 2 �|

  5. Optimization problem Optimization maximize: p ◦ = 1 � � tr [ E 1 ρ 1 ] + tr [ E 2 ρ 2 ] , 2 subject to: E 1 ≥ 0 , E 2 ≥ 0 , E 1 + E 2 ≤ 1 , � � tr [ E 1 ρ 2 ] ≤ m tr [ E 1 ρ 1 ] + tr [ E 1 ρ 2 ] , � � tr [ E 2 ρ 1 ] ≤ m tr [ E 2 ρ 1 ] + tr [ E 2 ρ 2 ] . Equal occurrence probabilities Semidefinite programming

  6. Bloch vector representation In the 2-dim subspace = < | φ 1 � , | φ 2 � > Bloch vector representation ρ a = 1 + n a · σ E µ = α µ + β µ · σ , 2 Optimization in terms of parameters { α µ , β µ } maximize: p ◦ = 1 � � α 1 + β 1 · n 1 + α 2 + β 2 · n 2 , 2 subject to: α 1 ≥ | β 1 | , α 2 ≥ | β 2 | , α 1 + α 2 + | β 1 + β 2 | ≤ 1 , � � α 1 + β 1 · n 2 ≤ m 2 α 1 + β 1 · ( n 1 + n 2 ) , � � α 2 + β 2 · n 1 ≤ m 2 α 2 + β 2 · ( n 1 + n 2 ) .

  7. Optimal success probability  � � A m 1 − |� φ 1 | φ 2 �| , (0 ≤ m ≤ m c ) ,    p ◦ = � �  1 � 1 − |� φ 1 | φ 2 �| 2 1 + , ( m c ≤ m ≤ 1) ,   2 where � � m c = 1 � 1 − |� φ 1 | φ 2 �| 2 1 − , 2 and A m is an increasing function of error margin and defined to be 1 − m � � � A m = 1 + 2 m (1 − m ) . (1 − 2 m ) 2

  8. Success probability p ◦ ( m ) 1 p : success probability 0.8 p m 0.6 0.4 ο 0.2 p u 0 0 0.1 0.2 0.3 0.4 0.5 m c m : error margin p m : minimum error discrimination p u : unambiguous discrimination

  9. Strong and weak error-margin conditions I Strong conditions P ρ 2 | E 1 ≤ m , P ρ 1 | E 2 ≤ m � � = 1 − |� φ 1 | φ 2 �| p ◦ A m , (0 ≤ m ≤ m c ) 1 − m � � � A m ≡ 1 + 2 m (1 − m ) (1 − 2 m ) 2 Weak conditions p × = P E 1 ,ρ 2 + P E 2 ,ρ 1 ≤ m � √ m + � 2 � p ◦ = 1 − |� φ 1 | φ 2 �| , (0 ≤ m ≤ m c ) POVM E 1 , E 2 , E 3 : rank 0 or 1

  10. Strong and weak error-margin conditions II 1 p : success probability 0.8 p m 0.6 Weak 0.4 Strong ο 0.2 p u 0 0 0.1 0.2 0.3 0.4 0.5 m c m : error margin p m : minimum error discrimination p u : unambiguous discrimination

  11. Optimal discrimination by LOCC Local Operations and Classical Communication (LOCC) Bipartite state ? ? Local operations Alice Bob Classical communication

  12. Two Orthogonal pure states Two orthogonal pure states can be perfectly discriminated by LOCC:(Local Operations and Classical Communication) (Walgate et al. , 2000) Example : 1 1 | φ 1 � = √ ( | 0 �| 0 � + | 1 �| 1 � ) = √ ( | + �| + � + | − �| − � ) 2 2 1 1 √ √ | φ 2 � = ( | 0 �| 0 � − | 1 �| 1 � ) = ( | + �| − � + | − �| + � ) 2 2 1 where , | ± � = √ ( | 0 � ± | 1 � ) 2 In general, if � φ 1 | φ 2 � = 0 � | φ 1 � = � � | i � : Orthonormal basis i | i �| ξ i � i | i �| η i � , where | φ 2 � = � � ξ i | η i � = 0

  13. Local discrimination of nonorthogonal states Local discrimination Two non-orthogonal pure states (generally entangled) can be optimally discriminated by LOCC. Discrimination with minimum error: Virmani et al . (2001) � 1 − |� φ 1 | φ 2 �| 2 � m c = 1 Error margin : m c ≤ m ≤ 1, 2 Unambiguous discrimination: Chen et al . (2001,2002), Ji et al . (2005) Error margin : m = 0 We can show For any error margin, two pure states can be optimally discriminated by LOCC.

  14. Three-element POVM of rank 0 or 1 Optimal POVM of discrimination with error margin { E 1 , E 2 , E 3 } : each element is of rank 0 or 1 Theorem Let V be a two-dimensional subspace of a multipartite tensor-product space H , and P be the projector onto the subspace V . Then, for any three-element POVM { E 1 , E 2 , E 3 } of V with every element being of rank 0 or 1, there exists a one-way LOCC POVM { E L 1 , E L 2 , E L 3 } of H such that E µ = PE L µ P ( µ = 1 , 2 , 3) . Proj. Op. P { E ,E ,E } rank 0 or 1 1 2 3 L 2-dim. subspace V E = P E P µ µ L L L { E ,E ,E } : LOCC 1 2 3 Multi partite H

  15. Unitary process { U 1 , U 2 } discrimination I Discrimination between states {| φ 1 � , | φ 2 �} P max ( m , | φ 1 � , | φ 2 � ) = f ( m , |� φ 1 | φ 2 �| ) � √ m + √ 1 − s √ � 2  � � 0 ≤ m < 1 1 − s 2 1 − ,  2 f ( m , s ) = √ √ � � � � 1 1 1 − s 2 1 − s 2 1 + , 1 − ≤ m ≤ 1  2 2 f ( m , s ) is decreasing with respect to s Discrimination between processes { U 1 , U 2 } P pure max ( m ) = max | φ � P max ( m , | φ 1 � , | φ 2 � ) = f ( m , µ ) � � φ | U + � � µ ≡ min 1 U 2 | φ � � | φ � Remark: The optimal success probability is attained by a pure-state input, since P pure max ( m ) is concave with respect to m

  16. P ( m ) max Discrimination between processes { U 1 , U 2 } II � � p 1 2 1 + 1 � � 2 1 0.8 0.6 PSfrag repla emen ts 1 � � 0.4 m � � p 1 2 m = 1 � 1 � � 2 0.2 0 0 0.2 0.4 0.6 0.8 1 m : error margin � � � φ | U + � µ ≡ min | φ � 1 U 2 | φ � �

  17. Minimum fidelity µ � d � � � � = � � � φ | U + q a e i θ a � � ≡ min 1 U 2 | φ � min µ � � � � | φ � q a ≥ 0 , P a q a =1 � a =1 � where { e i θ 1 , e i θ 2 , . . . , e i θ d } are eigenvalues of U + 1 U 2 µ µ=0 µ>0

  18. Unitary processes { T g } g ∈ G : T g is a unitary projective repersentation of a finite group G Unitary projective representation T g T h = c g , h T gh ( T + g = T − 1 g , | c g , h | = 1 , g , h ∈ G ) where { c g , h } is a factor set. State discrimination � � 1 P φ g = | G | , | φ g � = T g | φ � g ∈ G where | G | is the order of G .

  19. Covariant measurement ✓ ✏ Covariant POVM Optimal POVM { E g , E ? } can be assumed covariant: T g E ? T + T g E h T + g = E ? , g = E gh ✒ ✑ ✓ ✏ Optimization with covariant POVM maximize: P ◦ = � φ | E 1 | φ � � T g E 1 T + subject to: E 1 ≥ 0 , g ≤ 1 g ∈ G weak error-margin condition � � φ | T + P × = h E 1 T h | φ � ≤ m h ( � =1) ✒ ✑

  20. If { T g } is irreducible (I) By Schur’s lemma g = | G | � T g E 1 T + d tr [ E 1 ] · 1 ( d = dimension) g ∈ G g ∈ G T g E 1 T + Completeness of POVM : � g ≤ 1 P ◦ = tr [ E 1 ρ ] ≤ tr [ E 1 ] ≤ d | G | T + � � Error-margin condition : � g E 1 T g ρ ≤ m g ( � =1) tr m P ◦ = tr [ E 1 ρ ] ≤ tr [ E 1 ] ≤ | G | d − 1

  21. If { T g } is irreducible (II) Maximal success probability P ( m ) max m � (0 ≤ m ≤ m c ) d − 1 , | G | P max ( m ) = d d | G | , ( m c ≤ m ≤ 1) j G j PSfrag repla emen ts 1 − d m c = | G | d 0 m = 1 � 1 m j G j

  22. General case For any E 1 ≥ 0 min( m r , d r ) d r � T g E 1 T + � g ≥ E 1 , κ ≡ κ | G | r g ∈ G | G | = order of G , r = irreducible representation d r = dimension of r , m r = multiplicity of r (Proof: orthogonality of representation matrices and Schwarz inequality) d r d r Note: � | G | = 1 (Plancherel measure) r g ∈ G T g E 1 T + Completeness of POVM : � g ≤ 1 P ◦ = tr [ E 1 ρ ] ≤ tr [ E 1 ] ≤ κ T + � � Error-margin condition : � g E 1 T g ρ ≤ m g ( � =1) tr κ P ◦ = tr [ E 1 ρ ] ≤ tr [ E 1 ] ≤ 1 − κ m

  23. Maximal success probability κ � (0 ≤ m ≤ m c ) 1 − κ m , P max ( m ) = ◦ ( m c ≤ m ≤ 1) κ, = 1 − κ m c min( m r , d r ) d r � κ = | G | r Note : With a sufficient large ancilla, d 2 d 2 � � r r κ → | G | → | G | = 1 (Plancherel measure) r r ( m r ≥ 1) Optimal input and POVM min( m r , d r ) � 1 d r � � | φ � = √ κ | G || r , a , a � r a =1 E 1 = P max ( m ) | φ �� φ | ◦

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend