understanding submillimetre galaxies lessons from low
play

Understanding Submillimetre Galaxies: Lessons from Low Redshifts - PowerPoint PPT Presentation

#SMG20 Durham 2017 Understanding Submillimetre Galaxies: Lessons from Low Redshifts Paul van der Werf Leiden: Marissa Rosenberg Rowin Meijerink Saskia van den Broek Edo Loenen Kirsty Butler Cardiff/ESO :Padelis Papadopoulos ESTEC:


  1. #SMG20 – Durham 2017 Understanding Submillimetre Galaxies: Lessons from Low Redshifts Paul van der Werf Leiden: Marissa Rosenberg Rowin Meijerink Saskia van den Broek Edo Loenen Kirsty Butler Cardiff/ESO :Padelis Papadopoulos ESTEC: Kate Isaak Groningen: Marco Spaans Madrid: Santiago Garcia-Burillo MPIfR: Axel Weiß UCL: Thomas Greve

  2. Know your classics • Casey, Narayanan, & Cooray 2014, Phys Rep , 541, 45 • Carilli & Walter 2013, ARA&A , 51, 105 • Blain, Smail, Ivison, Kneib & Frayer, 2002, Phys Rep , 369, 111 • Scoville, 2012, Canary Winter School, arXiv/1210.6990

  3. Outline • ULIRGs vs. SMGs • Local physical conditions from FIR-submm spectra • Molecular gas mass • Gas outflows

  4. From IRTRONs to ULIRGs • 1984- 1985: IRAS (“ultra - high luminosity”: Houck et al ., 1985)

  5. Local ULIRGs are major mergers (GOALS - Evans et al .) At L IR > 5×10 12 L ʘ , all (U)LIRGs show merging signatures

  6. Babies or monsters?  Cool ULIRG  Warm ULIRG  QSO (Sanders et al ., 1988)

  7. Extreme star formation L IR / L CO  SFR/ M H2  SFE (Gao & Solomon, 2001) L   1 ULIRGs : FIR 100 L M   M H 2   1 Milky Way : 1 . 5 L M L IR  SFR     1 Galactic GMCs : 1 . 8 L M     1 OMC - 1 : 54 L M     1 Orion BN - KL : 400 L M  

  8. Strong evolution (Casey et al ., 2014)

  9. ULIRGs vs. SMGs Where does the analogy break down? • At same L IR , T d is lower at high z • CO disks in SMGs are larger than in ULIRGs • Position with respect to Galaxy Main Sequence? (Casey et al ., 2014)

  10. ULIRGs vs. SMGs CO ladders (Greve et al ., 2014) NB: selection, diversity

  11. Outline • ULIRGs vs. SMGs • Local physical conditions from FIR-submm spectra • Molecular gas mass • Gas outflows

  12. Mrk 231 Herschel SPIRE FTS (Van der Werf et al ., 2010)

  13. Mrk 231 CO ladder 2 PDRs + XDR 6.4:1:4.0 n=10 4.2 , F X =28 * n=10 3.5 , G 0 =10 2.0 n=10 5.0 , G 0 =10 3.5 * 28 erg cm -2 s -1  G 0 =10 4.2 (Van der Werf et al ., 2010)

  14. XDRs vs. PDRs Physical differences • X-rays penetrate much larger column densities than UV photons • Gas heating efficiency in XDRs is ≈10— 50%, compared to <1% in PDRs • Dust heating much more efficient in PDRs than in XDRs • CO/[CII] elevated in XDRs compared to PDRs

  15. XDRs vs. PDRs CO ladder Identical total incident energy (Spaans & Meijerink, 2008)

  16. CO cooling fraction as AGN tracer HerCULES sample PAH 6.2 EW traces starburst fraction Mrk231  (Rosenberg et al ., 2015) IRASF05198-2524

  17. CO ladders of local (U)LIRGs Herschel SPIRE/FTS data from HerCULES Identical total incident energy α > 0.66 0.33 < α < 0.66 α < 0.33 α = CO(12−11)+CO(13−12) (Rosenberg et al ., 2015) CO(5−4)+CO(6−5)

  18. Starburst and AGN tracers Principal component analysis of HerCULES lines starbursts  CO excitation is the best AGN indicator AGNs  ([CII]+[OI])/FIR high in starbursts  OH + and H 2 O + do not prefer AGNs (Van den Broek et al ., in prep .)

  19. MPDRs and CRDRs CO ladder • For almost all starbursts, UV heating (PDR) is insufficient. • MPDRs or CRDRs are needed. • Extreme MPDRs are hard to distinguish from XDRs. (Kazandjian et al ., 2015)

  20. Fine-structure line deficits GOALS sample - [CII] 158 μ m, [NII] 122/204 μ m, [OI] 63 μ m, [OIII] 88 μ m (Casey et al ., 2014) (Diaz-Santos et al ., 2017) offset only due to larger size?

  21. [CII] line deficit at for SMGs SPT sample (Spilker et al ., 2016)

  22. Line deficits and physical conditions PDR modeling based on [CII], [OI] and [NII] Transition in properties at ∑ IR = 5×10 10 L ʘ /kpc 2 (Diaz-Santos et al ., 2017)

  23. Outline • ULIRGs vs. SMGs • Local physical conditions from FIR-submm spectra • Molecular gas mass • Gas outflows

  24. H 2 mass from observations of other tracers the invisible molecule H 2 observe excitation of other species = observe H 2 through its collisions Modeling excitation yields conversion factor to H 2 mass

  25. Star formation laws and α CO (Casey et al ., 2014)

  26. α CO from improved data and modeling See talk by Weiß Weiß et al., in prep.

  27. Outline • ULIRGs vs. SMGs • Local physical conditions from FIR-submm spectra • Molecular gas mass • Gas outflows

  28. Self-regulated galaxy buildup Theoretical paradigm star feedback gas outflow gas inflow forming gas observable Infrared, H α , CO, observable HCN, dust, etc CO, H α , X-rays, observable etc. extremely Supernova remnants, AGNs difficult to observe

  29. Mrk 231 outflow in CO (Feruglio et al ., 2010) H 2 O H 2 O absorption emission

  30. Mrk 231 outflow in CO and HCN (Aalto et al ., 2014) The outflowing molecular gas is dense!

  31. Multi-phase outflows CO ladder • Complex structure and velocity field • Out-of-equilibrium chemistry • Relative and total masses? • Observations of multiple phases needed (Wada, Schartmann, & Meijerink, 2016)

  32. H α supernebulae around (U)LIRGs NGC6240  R  H α (Armus et al ., 1990)

  33. Ubiquity of molecular outflows Do galaxies where the integrated spectrum does not show wings have no outflows? (García-Burillo et al ., 2014) NGC1068, ALMA

  34. NGC1068 velocity field

  35. NGC1068 outflow

  36. IRAS 17208-0014

  37. IRAS 17208-0014 outflow (García-Burillo et al ., 2015)

  38. Driving (García-Burillo et al ., 2015)

  39. Outflow tracers Can we use OH + and CO(9−8) to trace high -z outflows?

  40. OH + outflow at z = 2.41

  41. OH + in Arp220 Herschel/SPIRE, Rangwala et al., 2012

  42. Hot off the press: OH + in Arp220 with ALMA Band 10 OH+ NH 2 red wing OH + blue wing OH + main absorption

  43. Open questions • CO ladder: what is the role of mechanical and cosmic ray heating and what can we learn from it? • Fine-structure lines: are there deviations from the low-z relation? What happens at low metallicities? • Outflows: how do outflow properties depend on galaxy properties? What is the mass outflow rate? What happens to the outflowing gas? • Extreme star formation: Is Eddington-limited star formation really relevant? • Arp220: What is happening in the obscured nuclei? How can we tell? • SMGs vs . ULIRGs: what do the differences mean? • IMF: universal? Top-heavy? How can we tell?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend