understanding luminous infrared galaxies in the herschel
play

Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 - PowerPoint PPT Presentation

Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella


  1. Understanding Luminous Infrared Galaxies in the Herschel Era Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella (Caltech/IPAC), Lisa Kewley (ANU)

  2. Understanding submm-selected LIRGs in the Herschel Era SMG20 – Durham – 8/01/17 Arp 84 David B. Sanders (sanders@ifa.hawaii.edu) Institute for Astronomy, University of Hawai`i Collaborators: Jason Chu (IfA), Kirsten Larson (Caltech/IPAC), Joseph Mazzarella (Caltech/IPAC), Lisa Kewley (ANU)

  3. Understanding Luminous Infrared Galaxies in the Herschel Era I . Z ~ 0 (PACS+SPIRE) The Herschel-GOALS atlas II. Z ~ 2.3 (BPT diagram) Herschel vs. MOSDEF selection

  4. Why Study Luminous IR Galaxies? • Hundreds of luminous infrared galaxies (LIRGs) first discovered in the 1980s. • They emit the bulk of their bolometric luminosities in the infrared: L IR = L (8-1000 μ m). – LIRG: 11 ≤ log( L IR / L ¤ ) < 12 – ULIRG: 12 ≤ log( L IR / L ¤ ) < 13 • Many are interacting/merging • (U)LIRGs much more common in the high- z universe (detected as SMGs). Ricci+ 2017

  5. • Consists of the 201 brightest galaxies in the Revised Bright Galaxy Sample (RBGS) with L IR ≥ 10 11 L ¤ . • GOALS is a statistically complete, flux-limited local sample of infrared luminous galaxies. • They represent a complete picture of galaxy evolution in the local universe. è Critical to study these galaxies in the FIR/submm, where they emit the bulk of their bolometric luminosity.

  6. I. Herschel -GOALS Observations • Entire GOALS sample imaged by PACS and SPIRE (PI: Sanders). • Photodetector Array Camera and Spectrometer (PACS) – 70 μ m è 5.6” beam FWHM – 100 μ m è 6.8” – 160 μ m è 11.4” • Spectral and Photometric Imaging Receiver (SPIRE) – 250 μ m è 18.1” Herschel PACS and SPIRE Transmission Curves 1.0 Normalized Response – 350 μ m è 25.2” 0.8 0.6 – 500 μ m è 36.6” 0.4 0.2 0.0 100 1000 Wavelength [ µ m] Chu+ 2017

  7. The Herschel -GOALS Atlas • Maps of all 201 GOALS systems IRAS F13564+3741 (Arp 84) 37.4890 70 µ m 100 µ m have been published for all six 37.4640 Declination Herschel bands in Chu et al. (2017). 37.4390 37.4140 • Aperture photometry measured for FOV = 100 Kpc 2 10 Kpc = 36.0" 37.3890 209.6991 209.6741 209.6491 209.6241 209.5991 +37:29:20.48 160 µ m 250 µ m every GOALS object: +37:27:50.49 – Total system fluxes. +37:26:20.50 – Component fluxes where possible. +37:24:50.50 • Very good signal to noise ratios: +37:23:20.51 58 m 41.79 s 13 h 58 m 35.80 s 58 m 29.80 s 58 m 47.79 s 58 m 23.80 s 350 µ m 500 µ m – PACS: Typical S/N ~10-20 – SPIRE: Typical S/N ~5-15 Data: http://irsa.ipac.caltech.edu/data/GOALS/galaxies/ Right Ascension

  8. Results: Infrared SEDs of (U)LIRGs (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  9. Results: Infrared SEDs of (U)LIRGs IRAS (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  10. Results: Infrared SEDs of (U)LIRGs IRAS + Spitzer + WISE (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  11. Results: Infrared SEDs of (U)LIRGs IRAS + Spitzer + WISE + Herschel (Chu+ 2017bc, in prep.) 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 11.50 < log(L IR /L Sun ) < 11.75 N=64 N=58 N=38 12 12 12 ν L ν [log L Sun ] 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000 λ [ µ m] 11.75 < log(L IR /L Sun ) < 12 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=19 N=13 N=9 12 12 12 11 11 11 10 10 10 9 9 9 1 10 100 1000 1 10 100 1000 1 10 100 1000

  12. Results: Infrared SEDs of (U)LIRGs • SED peak: Ø Becomes brighter, with Median Infrared SEDs of GOALS and KINGFISH Galaxies significant jump at highest L IR . 12.25 < log(L IR /L Sun ) 12.00 < log(L IR /L Sun ) < 12.25 Ø Peak is at shorter wavelengths 11.75 < log(L IR /L Sun ) < 12.00 12 11.50 < log(L IR /L Sun ) < 11.75 11.25 < log(L IR /L Sun ) < 11.50 with increasing L IR . 11.00 < log(L IR /L Sun ) < 11.25 10.50 < log(L IR /L Sun ) < 10.75 10.25 < log(L IR /L Sun ) < 10.50 10.00 < log(L IR /L Sun ) < 10.25 • 9.75 < log(L IR /L Sun ) < 10.00 FIR/sub-mm spectral index: 11 Ø GOALS: Nearly constant at all ν L ν [log L Sun ] L IR at λ ≥ 250 μ m, F ∝ ν 4.05±0.12 . 10 Ø Sub-LIRGs less steep. Ø x2 extra jump in luminosity at L IR at λ ≥ 60 μ m in highest bin. 9 • MIR (30-70 μ m) spectral index: Ø Relatively constant for all 8 1 10 100 1000 GOALS bins, except two λ [ µ m] (Chu+ 2017b, in prep.) highest bins.

  13. Results: Comparison to Model SEDs CE01 Median Infrared SEDs 12.25 < log(L IR /L Sun ) < 12.50 12.00 < log(L IR /L Sun ) < 12.25 12 • We compared our median 11.75 < log(L IR /L Sun ) < 12.00 11.50 < log(L IR /L Sun ) < 11.75 11.25 < log(L IR /L Sun ) < 11.50 11.00 < log(L IR /L Sun ) < 11.25 10.50 < log(L IR /L Sun ) < 10.75 10.25 < log(L IR /L Sun ) < 10.50 10.00 < log(L IR /L Sun ) < 10.25 11 ν L ν [log L Sun ] 9.75 < log(L IR /L Sun ) < 10.00 SEDs to the model predictions 10 of Chary & Elbaz (2001). 9 8 • CE01 produced SED templates 0.0 − 0.5 of galaxies as a function of IR − 1.0 log[ ν L ν /L IR ] luminosity using IRAS , ISO , − 1.5 − 2.0 and SCUBA data. − 2.5 − 3.0 1 10 100 1000 λ [ µ m] Chu et al., (2017b, in prep.)

  14. Results: Comparison C+17 to CE01 Model SEDs 9.75 < log(L IR /L Sun ) < 10.00 10.00 < log(L IR /L Sun ) < 10.25 N=10 N=8 12 12 ν L ν [log L Sun ] 11 11 10 10 9 9 • In the FIR/sub-mm, CE01 slightly underestimates 8 8 1 10 100 1000 1 10 100 1000 λ [ µ m] 10.25 < log(L IR /L Sun ) < 10.50 10.50 < log(L IR /L Sun ) < 10.75 flux in some bins, while in others it overestimates. N=7 N=6 12 12 11 11 10 10 9 9 • 8 8 In the MIR, CE01 matches the data well except in 1 10 100 1000 1 10 100 1000 11.00 < log(L IR /L Sun ) < 11.25 11.25 < log(L IR /L Sun ) < 11.50 N=64 N=58 highest L IR bins where it overestimates. 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 11.50 < log(L IR /L Sun ) < 11.75 11.75 < log(L IR /L Sun ) < 12 N=38 N=19 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 12.00 < log(L IR /L Sun ) < 12.25 12.25 < log(L IR /L Sun ) N=13 N=9 12 12 11 11 10 10 9 9 8 8 1 10 100 1000 1 10 100 1000 Chu et al., (2017b, in prep.)

  15. Results: Far-Infrared Colors • Plot of far-IR flux ratios as a function of L IR , including the following SED templates: Ø Chary & Elbaz (2001) Ø Rieke et al. (2009) • Comparison with models: Ø R09 predicts the KINGFISH galaxies well, except the 70/100 color. Ø CE01 predicts the KINGFISH galaxies well, except the 70/250 color. Ø Both models over-predict the 70/250 color for the GOALS galaxies. Chu et al., (2017b, in prep.)

  16. II. Optical Line Diagnostics of (U)LIRGs • Powerful tool to study a galaxy’s ISM conditions. • F irst put forth by Baldwin, Phillips, Terlevich (1981), hence “BPT” diagrams. • Uses optical emission line flux ratios to Increasing L IR separate starburst and AGN galaxies: • [O III ] λ 5007 / H β • [N II ] λ 6583 / H α • [S II ] λλ 6717, 6731 / H α • [O I ] λ 6300 / H α • Theoretical classification lines: • Kewley+ 2001 proposed first set of theoretical BPT classification lines for z =0. • Kewley+ 2013a produced theoretical classification lines up to z =3. Where do (U)LIRGs at z ~2.3 lie on the BPT diagram? Yuan et al. (2010)

  17. z ~ 2.3 Redshift Distribution Secure Redshifts on BPT Plot Secure Redshifts on BPT Plot 20 IR − Selected (MIR + FIR) Star − Forming (sBzK) All Galaxies Number of Galaxies 15 10 5 0 2.0 2.2 2.4 2.6 Redshift

  18. z ~ 2.3 Stellar Mass Distribution Stellar Mass Distribution on BPT Plot Stellar Mass Distribution on BPT Plot 20 IR − Selected (MIR + FIR) Star − Forming (sBzK) All Galaxies Number of Galaxies 15 10 5 0 8 9 10 11 12 log(M/M Sun )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend