unavoided crossing of energy levels in pt symmetric
play

Unavoided crossing of energy levels in PT -symmetric Natanzon-class - PowerPoint PPT Presentation

. Unavoided crossing of energy levels in PT -symmetric Natanzon-class potentials G eza L evai Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), Debrecen, Hungary AAMP19, Prague, 6-9 June 2016 Important novelties


  1. . Unavoided crossing of energy levels in PT -symmetric Natanzon-class potentials G´ eza L´ evai Institute for Nuclear Research, Hungarian Academy of Sciences (MTA Atomki), Debrecen, Hungary AAMP19, Prague, 6-9 June 2016

  2. Important novelties in PT QM There can be two sets of normalizable wave functions Discriminated by the q quasi-parity quantum number These states merge when the spectrum is complexified Then they are related by PT ψ ( q ) n ( E ) = ψ ( − q ) ( E ∗ ) n They can undergo unavoided crossing Then the two wave functions become dependent This is very different from the Hermitian setting

  3. The first examples The PT harmonic oscillator MZ PLA 1999 G V ( x ) = x 2 − 2i cx + x ∈ ( −∞ , ∞ ) ( x − i c ) 2 Unavoided crossing of energy levels E ( q ) n n = 4 n + 2 − 2 qα ψ ( q ) L ( qα ) (( x − ic ) 2 ) n ( x ) expressed via n The PT Coulomb potential MZ, GL PLA 2000 Similar results The background: ( z ) ∼ z j L ( j ) L ( − j ) n − j ( z ) for integer j n But is α = ± j legal?

  4. A further, more recent example The PT Scarf II potential Ahmed et al. PLA 2015 Unavoided crossing of energy levels The background: ( z ) ∼ (1 − z ) j P ( j,β ) P ( − j,β ) n − j ( z ) for integer j n Very similar results But is α = ± j legal? Are there further exactly solvable examples?

  5. The Book ∗ said... * M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions (New York, Dover, 1970), Eq. 22.3.1

  6. ...but temptation was too strong...

  7. ...which led to expulsion from Paradise

  8. A reminder on the exact solutions of the Schr¨ odinger equation An old variable transformation method Bhattacharjie and Sudarshan 1962 Schr¨ odinger eq. = ⇒ differential equation of special function F d 2 ψ d x 2 + ( E − V ( x )) ψ ( x ) = 0 insert ψ ( x ) = f ( x ) F ( z ( x )) and compare with d 2 F d z 2 + Q ( z )d F d z + R ( z ) F ( z ) = 0 to get � 2 � z ′′ ( x ) � � E − V ( x ) = z ′′′ ( x ) 2 z ′ ( x ) − 3 R ( z ( x )) − 1 d Q ( z ) − 1 + ( z ′ ( x )) 2 4 Q 2 ( z ( x )) . 4 z ′ ( x ) 2 d z Schwartzian derivatve terms E and the main potential terms

  9. New features of PT -symmetric potentials Unusual trajectories off the real x axis Reconsidered boundary conditions A relatively simple case: Imaginary coordinate shift (i.e integration constant in x ( z ) ) δ = − i c Avoid singularities Note: Introducing i c does not change the spectrum ...so it cannot introduce spontaneous PT breaking In some cases the problem has to be defined on a more general trajectory The boundary conditions cannot be satisfied on y = x − i c This is the case for the Coulomb and Morse potentials Duplication of bound states: quasi-parity q = ± 1 Complex energy eigenvalues: spontaneous breakdown of PT symmetry PT ψ ( q ) n ( x ) = ψ ( − q ) ( x ) n

  10. Apply the method to the Jacobi polynomials: F ( z ) = P ( α,β ) ( z ) n � 2 � z ′′ ( x ) + ( z ′ ( x )) 2 � � � � 2 z ′ ( x ) − 3 z ′′′ ( x ) n + α + β n + α + β E − V ( x ) = + 1 1 − z 2 ( x ) 4 z ′ ( x ) 2 2  � 2  � 2 ( z ′ ( x )) 2 � α + β � α − β +  1 − −  (1 − z 2 ( x )) 2 2 2 − 2 z ( x )( z ′ ( x )) 2 � α + β � � α − β � . (1 − z 2 ( x )) 2 2 2 The solutions are β +1 α +1 ψ ( x ) ∼ ( z ′ ( x )) − 1 2 (1 − z ( x )) 2 P ( α,β ) 2 (1 + z ( x )) ( z ( x )) . n The yet unknown z ( x ) can be obtained from a differential equation � 2 φ ( z ) ≡ � 2 p I (1 − z 2 )+ p II + p III z � � d z d z = C . (1 − z 2 ) 2 d x d x by direct integration � φ 1 / 2 ( z )d z = C 1 / 2 x + ǫ . ǫ : integration constant, coordinate shift

  11. The Scarf II potential p II = p III = 0  � 2 � 2  � α + β � α − β � β + α � � β − α � 1 − 1  + 2i sinh x V ( x ) = − + cosh 2 x cosh 2 x  2 2 4 2 2 Relations for the parameters: PT symmetry: = ⇒ α , β are real or imaginary α ↔ β : = ⇒ V ( x ) ↔ V ( − x ) V ( x ) invariant under α ↔ − α = ⇒ qα ≡ ± α quasi-parity qα 2 + 1 β 2 + 1 ψ ( q ) n ( x ) = C ( q ) 4 P ( qα,β ) n (1 − i sinh( x + i ǫ )) 4 (1 + i sinh( x + i ǫ )) (i sinh( x + i ǫ )) n n ( q ) < − [Re( qα + β ) + 1] / 2 Normalizable if The second set corresponds to resonances in the Hermitian setting ( α ∗ = β ) � 2 � n + qα + β + 1 E ( q ) = − n 2 Complex conjugate pairs if α is imaginary Spontaneous breakdown of PT symmetry “Sudden” mechanism: all the E ( q ) turn complex at the same time n

  12. The transition to complex energy eigenvalues Reparametrize to V ( x ) = − v r V R ( x ) + i v i V I ( x ), v r fixed, v i varied v r = 15 . 1, v i = 12 . 7 v i = 0 → 20 Unavoided crossings! Some are at the same v i . Complexification occurs for | v i | = v r + 1 / 4 = 15 . 35 for all n Sudden mechanism of PT symmetry breaking Note: ψ ( − ) ( x ) normalizable for v i ≥ 3 . 886, ψ ( − ) ( x ) for v i ≥ 10 . 858, ψ ( − ) ( x ) for v i ≥ 15 . 803. 0 1 2 ψ (+) ( x ) exists for v i ≤ 12 . 325. 3

  13. α = 1 . 9 Re ψ Im ψ ψ ( − α,β ) ψ ( α,β ) ( z ) ( z ) 0 1

  14. α = 1 . 5 Re ψ Im ψ ψ ( − α,β ) ψ ( α,β ) ( z ) ( z ) 0 1

  15. α = 1 . 2 Re ψ Im ψ ψ ( − α,β ) ψ ( α,β ) ( z ) ( z ) 0 1

  16. α = 1 . 0 Re ψ Im ψ ψ ( − α,β ) ψ ( α,β ) ( z ) ( z ) 0 1

  17. A Natanzon-class example: the generalized Ginocchio potential with 2+2 parameters G. L´ evai et al. J. Phys. A 36 (2003) 7611 p I = γ 2 + 1, p II = 0, p III = 4 Take γ = 1: generalized P¨ oschl–Teller limit Implicit z ( x ) function: r ≡ x − i ε = 1 ( γ 2 + sinh 2 u ) − 1 � tanh − 1 � � 2 sinh u γ 2 2 ( γ 2 + sinh 2 u ) − 1 + ( γ 2 − 1) ( γ 2 − 1) 1 1 2 tan − 1 � �� 2 sinh u . ε � = 0 to avoid singularity at x = 0 coth 2 u − γ 4 ( s ( s + 1) + 1 − γ 2 ) + γ 4 λ ( λ − 1) V ( r ) = γ 2 + sinh 2 u γ 2 + sinh 2 u − 3 γ 4 ( γ 2 − 1)(3 γ 2 − 1) 5 γ 6 ( γ 2 − 1) 2 + 4( γ 2 + sinh 2 u ) 3 , 4( γ 2 + sinh 2 u ) 2 The solutions and eigenvalues energy E nq = − γ 4 µ 2 nq depend on the q = ± 1 quasi-parity ( γ 2 + sinh 2 u ) 1 / 4 (cosh u ) − 2 n − 1 − µ nq − q ( λ − 1 1 2 + q ( λ − 1 2 ) (sinh u ) 2 ) ψ nq ( x ) ∼ ( q ( λ − 1 2 ) , − 2 n − 1 − µ nq − q ( λ − 1 2 )) × P (cosh(2 u )) . n  � 2 � 1 / 2  µ nq = 1 2 n + 1 + q ( λ − 1 � γ 2 ( s + 1 2 n + 1 + q ( λ − 1 � � � 2) 2 + (1 − γ 2 )  − 2) + 2)  γ 2

  18. Unbroken PT symmetry: real µ qn , s , λ The real (left panel) and imaginary (right panel) component of the PT -symmetric generalized Ginocchio potential for ε = 0 . 3, γ = 1 . 75, s = 8 . 1 and λ = 1 . 25 (solid line) and its supersymmetric partners V (+1) ( x ) + (dashed line) and V ( − 1) ( x ) (dotted line). + Normalisable states are found at E 0 +1 = − 171 . 313, E 1 +1 = − 106 . 160, E 2 +1 = − 46 . 679, E 3 +1 = − 5 . 666; E 0 − 1 = − 218 . 913, E 1 − 1 = − 154 . 978, E 2 − 1 = − 90 . 379, E 3 − 1 = − 33 . 993 and E 4 − 1 = − 1 . 061. The spectrum of V ( q ) + ( x ) is the same, with the exception of the E 0 q level, which is missing from its spectrum. The equivalence of ψ ( − q ) ( x ) and ψ ( q ) n − j ( x ) can be proven for α = j integer n

  19. Another 2+2-parameter subset of the Natanzon class G. L´ evai, J. Phys. A 45 (2012) 444020 p I = 1, p II = δ , p III = 0 It contains all SI potentials as special case : δ = 0 Scarf II δ → ∞ and C/δ = const. Rosen–Morse I V R ( x ) and V I ( x ) for C = − 1, δ = 0 . 3, Σ = 11 . 0624 and Λ = 1 . 26.

  20. Implicit potential: only x ( z ) is known in closed form. . . . . . nevertheless, everything can be evaluated exactly � 2 ( δ + 1 − z 2 ( x )) 2 + 5 Cδ 2 � n + α + β + 1 − 3 Cδ (3 δ + 2) ( δ + 1) E − V ( x ) = C ( δ + 1 − z 2 ( x )) 3 2 4 4 C Σ 2 C Λ z ( x ) − δ + 1 − z 2 ( x ) − δ + 1 − z 2 ( x ) � 2 � 2 � 2 � � α + β � α − β n + α + β + 1 − 1 Σ = δ − δ + + 2 2 2 4 Λ = α + β α − β α = α n , β = β n 2 2 Ψ n ( x ) = N n ( δ + 1 − z 2 ( x )) 1 / 4 (1 − z ( x )) α/ 2 (1 + z ( x )) β/ 2 P ( α,β ) ( z ( x )) n A four-parameter (2+2) potential: C and δ control the variable transformation Σ and Λ set the coupling coefficients Λ = 0: symmetric Ginocchio case Energy eigenvalues determined from the roots of the spectral equation for ω = ( α + β ) / 2: � δ 4(2 n + 1) 2 − δ − Σ − 1 � ( δ + 1) ω 4 + δ (2 n + 1) ω 3 + ω 2 + Λ 2 = 0 4

  21. How does the spectrum evolve if Σ is fixed and Λ is varied? Complexification occurs at Λ crit0 = 6 . 298, Λ crit1 = 7 . 542, Λ crit2 = 8 . 234 Now at different locations when α = ± M integer. Unavoided crossings! The q quasi-parity does not appear explicitly. ( x ) and ψ ( q ) The equivalence of ψ ( − q ) n − j ( x ) can be proven for α = j integer n

  22. The effect of ( n, α = − j ) ⇔ ( n − j, α = j ) Equations determining E n for Natanzon-class potentials � 2 � n + α 2 + β + 1 − 1 E 4 + s I − p I C = 0 2 1 − α 2 2 − β 2 E 2 + s II − p II C = 0 − α 2 2 + β 2 E 2 + s III − p III C = 0 Now take α = j The equations are invariant with respect to ( n, α = − j ) ⇔ ( n − j, α = j )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend