tropical aspects of eigenvalue computation problems
play

Tropical aspects of eigenvalue computation problems - PowerPoint PPT Presentation

Tropical aspects of eigenvalue computation problems Stephane.Gaubert@inria.fr INRIA and CMAP, Ecole Polytechnique S eminaire Algo Lundi 11 Janvier 2010 Synthesis of: Akian, Bapat, SG CRAS 2004, arXiv:0402090; SG, Sharify POSTA 09; and


  1. Tropical aspects of eigenvalue computation problems Stephane.Gaubert@inria.fr INRIA and CMAP, ´ Ecole Polytechnique S´ eminaire Algo Lundi 11 Janvier 2010 Synthesis of: Akian, Bapat, SG CRAS 2004, arXiv:0402090; SG, Sharify POSTA 09; and current work. . . Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 1 / 51

  2. Tropical / max-plus algebra R max := R ∪ {−∞} equipped with “ a + b ” = max( a , b ) “ ab ” = a + b Tropical algebra is hidden in the three following problems . . . Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 2 / 51

  3. 1. Lidski˘ ı, Viˇ sik, Ljusternik perturbation theory Theorem (Lidski˘ ı 65; also Viˇ sik, Ljusternik 60) Let a ∈ C n × n be nilpotent, with m i Jordan blocks of size ℓ i . For a generic perturbation b ∈ C n × n , the matrix a + ǫ b has precisely m i ℓ i eigenvalues of order ǫ 1 /ℓ i as ǫ → 0 . Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 3 / 51

  4.  · 1 · · · · · · ·  · · 1 · · · · · ·     · · · · · · · · · � �     · · · · 1 · · · ·     · · · · · 1 · · · a =     · · · · · · · · · � �     · · · · · · · 1 ·     · · · · · · · · ·   · · · · · · · · · 6 eigenvalues ∼ ωǫ 1 / 3 , ω 3 = λ , λ eigenvalue of � b 31 � b 34 b 61 b 64 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 4 / 51

  5.  · 1 · · · · · · ·  · · 1 · · · · · ·    · · · · · · · · ·  � � �     · · · · 1 · · · ·     a = · · · · · 1 · · ·     · · · · · · · · · � � �     · · · · · · · 1 ·     · · · · · · · · · � � �   · · · · · · · · · 2 eigenvalues ∼ ωǫ 1 / 2 , ω 2 = λ , � � b 31 � − 1 � b 37 � b 34 � λ = b 87 − b 81 b 84 b 61 b 64 b 67 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 4 / 51

  6.  · 1 · · · · · · ·  · · 1 · · · · · ·     · · · · · · · · · � � � �     · · · · 1 · · · ·     · · · · · 1 · · · a =     � · · · � · · · � · · � ·     · · · · · · · 1 ·     · · · · · · · · · � � � �   · · · · · · · · · � � � � 1 eigenvalue ∼ λǫ , − 1     b 31 b 34 b 37 b 39 � � λ = b 99 − b 91 b 94 b 97 b 61 b 64 b 67 b 69     b 81 b 84 b 87 b 89 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 4 / 51

  7. Lidski˘ ı’s approach does not give the correct orders in degenerate cases. . . If the matrix � b 31 b 34 � b 61 b 64 has a zero-eigenvalue, then, a + ǫ b has less than 6 eigenvalues of order ǫ 1 / 3 . Moreover, the Schur complement � � b 31 b 34 � − 1 � b 37 � � b 87 − b 81 b 84 b 61 b 64 b 67 is not defined, and there may be no eigenvalue of order ǫ 1 / 2 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 5 / 51

  8. Finding, in general, the correct order of magnitude of all eigenvalues (Puiseux series) ⇐ ⇒ characterizing (combinatorially) the Newton polygon of the curve { ( λ, ǫ ) | det( a + ǫ b − λ I ) = 0 } long standing open problem (see survey Moro, Burke, Overton, SIMAX 97) This talk: tropical algebra yields the correct order of magnitudes, in degenerate cases (new degenerate cases appear but of a higher order). Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 6 / 51

  9. 2. Computing the roots of matrix pencils � 1 2 � � − 3 10 � � 12 15 � P ( λ ) = λ 2 10 − 18 +10 − 18 + λ 3 4 16 45 34 28 Apply the QZ algorithmb to the companion form of P ( λ ) Matlab (7.3.0) [similar in Scilab] We get: − Inf , − 7 . 731 e − 19 , Inf , 3 . 588 e − 19 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 7 / 51

  10. 2. Computing the roots of matrix pencils � 1 2 � � − 3 10 � � 12 15 � P ( λ ) = λ 2 10 − 18 +10 − 18 + λ 3 4 16 45 34 28 Apply the QZ algorithmb to the companion form of P ( λ ) Matlab (7.3.0) [similar in Scilab] We get: − Inf , − 7 . 731 e − 19 , Inf , 3 . 588 e − 19 Scaling of Fan, Lin and Van Dooren (2004): − Inf , Inf , − 3 . 250 e − 19 , 3 . 588 e − 19 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 7 / 51

  11. 2. Computing the roots of matrix pencils � 1 2 � � − 3 10 � � 12 15 � P ( λ ) = λ 2 10 − 18 +10 − 18 + λ 3 4 16 45 34 28 Apply the QZ algorithmb to the companion form of P ( λ ) Matlab (7.3.0) [similar in Scilab] We get: − Inf , − 7 . 731 e − 19 , Inf , 3 . 588 e − 19 Scaling of Fan, Lin and Van Dooren (2004): − Inf , Inf , − 3 . 250 e − 19 , 3 . 588 e − 19 tropical scaling (this talk) : − 7 . 250 E − 18 ± 9 . 744 E − 18 i , − 2 . 102 E + 17 ± 7 . 387 E + 17 i the correct answer (agrees with Pari ). Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 7 / 51

  12. 3. Location of roots of polynomials Given f ( z ) = a 0 + a 1 z + · · · + a k z k + · · · + a n z n , a i ∈ C Let ζ 1 , . . . , ζ n be the solutions of f ( z ) = 0, ordered by | ζ 1 | ≥ · · · ≥ | ζ n | . Bound | ζ i | ? E.g., Cauchy (1829) | a k | | ζ 1 | ≤ 1 + max | a n | . 0 ≤ k ≤ n − 1 Fujiwara (1916) � | a k | | ζ 1 | ≤ 2 max n − k | a n | . 0 ≤ k ≤ n − 1 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 8 / 51

  13. This talk: Fujiwara’s inequality is of a tropical nature the tropical point of view yields other inequalities Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 9 / 51

  14. Tropical polynomial functions. . . are convex piecewise-linear with nonnegative integer slopes p ( x ) = “( − 1) x 2 + 1 x + 2” = max( − 1 + 2 x , 1 + x , 2) Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 10 / 51

  15. “Fondamental theorem of algebra” A tropical polynomial function � b k x k ” = max p ( x ) = “ 0 ≤ k ≤ n b k + kx . 0 ≤ k ≤ n can be factored uniquely (Cuninghame-Green & Meijer, 80) as � p ( x ) = “ b n ( x + α k )” 1 ≤ k ≤ n � = b n + max( x , α k ) . 1 ≤ k ≤ n The points α 1 , . . . , α n are the tropical roots: the maximum is attained twice. Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 11 / 51

  16. The Newton polygon ∆ is the concave hull of the points ( k , b k ), k = 0 , . . . , n . Proposition Two formal (tropical) polynomials yield the same polynomial function iff their Newton polygons coincide Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 12 / 51

  17. The Newton polygon ∆ is the concave hull of the points ( k , b k ), k = 0 , . . . , n . Proposition Two formal (tropical) polynomials yield the same polynomial function iff their Newton polygons coincide Indeed, the function x �→ max 0 ≤ k ≤ n b k + kx is the Legendre- Fenchel transform of k �→ − b k . Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 12 / 51

  18. The Newton polygon ∆ is the concave hull of the points ( k , b k ), k = 0 , . . . , n . Proposition Two formal (tropical) polynomials yield the same polynomial function iff their Newton polygons coincide Indeed, the function x �→ max 0 ≤ k ≤ n b k + kx is the Legendre- Fenchel transform of k �→ − b k . The tropical roots α 1 , . . . , α k are the opposite of the slopes of ∆. They can be computed in O ( n ) time. Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 12 / 51

  19. p ( x ) = max(2 + 7 x , 6 + 4 x , 5 + 2 x , 2 + x , 3) = 2 + 2 max( − 1 , x ) + 2 max( − 1 / 2 , x ) + max(4 / 3 , x ) Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 12 / 51

  20. Associate to f = a 0 + · · · + a n z n , a i ∈ C , the tropical polynomial p ( x ) = max 0 ≤ k ≤ n log | a k | + kx . The maximal tropical root is log | a k | − log | a n | α 1 = max n − k 1 ≤ k ≤ n − 1 Fujiwara’s bound readsa � | a k | | ζ 1 | ≤ 2 max n − k | a n | . 0 ≤ k ≤ n − 1 Stephane Gaubert (INRIA and CMAP) Tropical aspects of eigenvalue problems S´ eminaire Algo 13 / 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend