transport processes part 3b
play

Transport processes Part 3b Ron Zevenhoven bo Akademi University - PDF document

Transport processes (TRP) Transport processes Part 3b Ron Zevenhoven bo Akademi University Thermal and Flow Engineering / Vrme- och strmningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 2/48 Transport processes (TRP) VST rz18


  1. Transport processes (TRP) Transport processes – Part 3b Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 2/48 Transport processes (TRP) VST rz18

  2. 3/48 Transport processes (TRP) Non-stationary diffusion in 2-D VST rz18 Non-stationary diffusion in 2-D /1 • For diffusion in two dimensions, with constant   material properties: 2 2    T T T   a   Transport processes (TRP)  2 2 t    x y    • which requires 1 initial condition for the x,y plane + 4 boundary conditions. • Using variables ζ = x/√(at) and η= y/√(at): 2 2     T T T T       ½ ½     2 2     • with for example starting and boundary conditions: t = 0: x≥0, y≥0 : T = T 1 t > 0: x=0, y>0 : T = T 0 x>0, y=0 : T = T 0 x=∞, y>0 : T = T 1 x>0, y=∞ : T = T 1 VST rz18

  3. Non-stationary diffusion in 2-D /2 • A case like this (↑) can be reduced to 2 ordinary differential equations by using separation of Transport processes (TRP) variables. • Sometimes a solution can be found by adding or multiplying the solutions for 1-dimensional problems. • Cases with a uniform starting temperature T(t=0,x,y) = T 1 over the whole (x,y) range, for example (0  L, 0  M), typically give solutions of the type T(t,x,y) = T 1 + (T 0 -T 1 )·(1 – F(x,t)·G(y,t)) • If F(x,t) and G(y,t) fullfil the boundary conditions at x=0, x=L, and at y=0, y=M, respectively, then the product function F(x,t)·G(y,t) will do that too. VST rz18 Non-stationary diffusion in 2-D /3 • Example case , start/boundary conditions: t = 0: 0≤x≤L, 0≤y≤M T = 0 Transport processes (TRP) t > 0: x=0 & x=L, 0≤y≤M T = T 0 y=0 & y=M, 0≤x≤L T = T 0 • Using the solution given in § 2.2: • For large t, using only the first eigenvalue (n = 0) including L = ∞, M = ∞ VST rz18

  4. Non-stationary diffusion in 2-D /4 • Example case , start/boundary conditions: t = 0: 0≤x≤L, 0≤y≤M T = 0 Transport processes (TRP) t > 0: x=0 0≤y≤M -λ·∂T/∂x = q y=0 0≤x≤L -λ·∂T/∂y = q • which gives a solution of the type T = φ(x,t) + ψ(y,t), with for t = 0: φ = 0 and ψ = 0, for t > 0, ∂φ/∂x = -q/λ for x=0, ∂ψ/∂y = -q/λ for y=0 • The result (see also next page): VST rz18 Non-stationary diffusion in 2-D /5 • Temperature field T(x,y,t) in a (half-infinite) corner at time t = 0.25·L 2 /a. At the corner (0,0) the temperature Transport processes (TRP) is T c = (4·q/λ)·√(a·t/π). Isotherms are given as 2·T/T c VST rz18

  5. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 10/48 3b 9/48 3b

  6. 11/48 3b Transport processes (TRP)         lim 0 r s a  t Heat is taken up at x = ξ VST rz18 12/48 3b Transport processes (TRP) VST rz18

  7. Transport processes (TRP) Transport processes (TRP) see next slide… VST rz18 VST rz18 14/48 3b 13/48 3b

  8. Moving front problems • The value for constant k in (3.73) follows via d 2 2 d Transport processes (TRP)  ( f ( x ))  making use of : erf ( f ( x )) . e . f ( x )  dx dx 2  x   T ( T T ) 2 1 4 a t a s 1  a . . e . and similar for medium b k  x  2 a t erf ( ) a 4 a a d ξ dk t k   gives with boundary condition (3.68) & dt dt 2 t 2 2  x  x   ( T T ) 2 1 k ( T T ) 2 1 4 a t 4 a t  s 1 a     s 0 b . . . e . r . . . . e . a s a b k k   2 a t 2 t 2 a t erf ( ) a erf ( ) b 4 a 4 a a b 2     and use x and also k to obtain a transceden tal equation for k t (that is not a function of x or t ! ) VST rz18 16/48 3b Transport processes (TRP) VST rz18

  9. 17/48 3b Transport processes (TRP) see next two slides… VST rz18 Moving front & mass transfer ξ c c A0 c B0 Transport processes (TRP) c A • Chemical reaction A + B  P x • Diffusion coefficient D is for A in reaction product P • At the reaction front, x = ξ:    c dV . c A . c d d A B B    0  D c . for surface A B 0  x A . dt A . dt dt   x For example: • Some solutions for H 2 + unsaturated fat  saturated fat. (3.80), z = k/√(4D) : VST rz18

  10. Moving front & mass transfer • Alternatively to the case above, species B may also have a noticable diffusion coefficient D B , giving a Transport processes (TRP) result similar to a thermal process. • With boundary condition the result will be - see Figure 3.7 above. • Here again k from a transcedental equation: VST rz18 20/48 3b Transport processes (TRP) δ = ξ - x d VST rz18

  11. 21/48 3b Transport processes (TRP) Heat is released at x = ξ VST rz18 22/48 3b Transport processes (TRP) see next slide… VST rz18

  12. Moving front & integral method     2 2 x 2 • From (3.85): *)     2 x  Transport processes (TRP) • Integral which leads to (3.86)    2      T d d T            dx Tdx T ( , t ). T ( , t ). a dx   2 t t dt dt  x          • First term in (3.86) gives, using *): δ – δ + δ/3 = δ/3 • Last term gives, using *) (2/δ-0)-(2/δ-2/δ) = 2/δ • The ”boundary condition at the solidification front” to be used to give (3.88) is (3.83); this gives    d         .( T T ). r . . .( T T ) q s 0 s 1 s  x dt VST rz18 24/48 3b Transport processes (TRP)         r r Y X  s   s     t c q t t c q t p p see next slide… VST rz18

  13. Moving front & integral method  c q • is the dimensionless thickness of the p   X   r molten layer s Transport processes (TRP) • Dimensionless group Ste is known as Stefan number • Long times τ→∞ give a linear relation between X and τ:     2 Ste  2 Ste             X or X Ste 1    Ste 3 Ste 1 Ste 3   and the front moves with constant velocity dξ/dt: Note: Figure 3.9 is for Ste = 2 • At the start X decreases with τ because some liquid solidifies on the cold solid. This gives the minimum dX/dτ =0 for Y = 2·Ste VST rz18 26/48 3b Transport processes (TRP) VST rz18

  14. 27/48 3b Transport processes (TRP) Note: Figure 3.9 is for Ste = 2 VST rz18 28/48 A classroom exercise - 3 • Scrap steel at T 0 = 50°C, melting temperature T s = 1450°C is put into molten steel at 1550°C. Heat is tranferred from the liquid to Transport processes (TRP) solid material by convection with heat transfer coefficient α = 5000 W/m 2 ·K. C • Calculate, using the material data given below, the Stefan number Ste, and the time to melt 0.1 m and 0.2 m, respectively, from the scrap steel. The dimensionless expression for relatively long times may be used (see course material below eq. 3-93) :     2 2              X Ste or X Ste Ste 1  Ste 3 1  3  For liquid steel : a = 5.7·10 -6 m 2 /s ; λ = 20 W/m·K, ρ = 7500 • kg/m 3 . For solid steel : a = 1·10 -5 m 2 /s ; λ = 30 W/m·K, ρ = 7500 kg/m 3 . Melting heat : r s = 2.8·10 5 J/kg. • answer : Ste = 2 ; t ( ξ = 0.1 m) = 1965 s ; t ( ξ = 0.2 m) = 3226 s VST rz18

  15. Transport processes (TRP) Transport processes (TRP) see next slide… VST rz18 VST rz18 30/48 3b

  16. Diffusion & source terms • For a cylinder, with symmetry around θ, and L→∞:     T T q   a r Transport processes (TRP)     t r r r ρ c p • (3.95) into (3.94) gives   T T ' dG q          a T ' a F    t t dt ρ c p which gives, selecting only the terms that are a function of (x,y,z,t), an equation (3.96) for T’(x,y,z,t) and an equation (3.97) with the source term, F(x,y,z) and G(t) • The result is (3.95) T(x,y,z,t) = T’(x,y,z,t) + F(x,y,z) + G(t) VST rz18 32/48 3b Transport processes (TRP) with constants C 1 , C 2 . VST rz18

  17. Transport processes (TRP) Transport processes (TRP) = h( T(r) – T(r > R) ) = T(r) VST rz18 VST rz18 34/48 3b 33/48 3b

  18. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 36/48 3b 35/48 3b

  19. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 38/48 3b 37/48 3b

  20. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 40/48 3b 39/48 3b

  21. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 42/48 3b 41/48 3b

  22. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 44/48 3b 43/48 3b

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend