transport processes part 4
play

Transport processes Part 4 Ron Zevenhoven bo Akademi University - PDF document

Transport processes (TRP) Transport processes Part 4 Ron Zevenhoven bo Akademi University Thermal and Flow Engineering / Vrme- och strmningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 Transport processes (TRP) VST rz18 3/42 4


  1. Transport processes (TRP) Transport processes – Part 4 Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi VST rz18 Transport processes (TRP) VST rz18

  2. 3/42 4 Transport processes (TRP) Except when Re = ∞: inviscid flow) Chapters 7-8-9 (not part of this course) VST rz18 4/42 4 Transport processes (TRP) VST rz18

  3. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 6/42 4 5/42 4

  4. 7/42 4  (viscous effects neglected: ”inviscid”)   v  v   y  z   y z       v v      rot v v x z     z x    v  v   y  x     x y   in Cartesian coordinate s Transport processes (TRP) Steady state: ∂ ../ ∂ t = 0 v not 0  rot v = 0 for streamline - sign because h↑ and g↓ VST rz18 8/42 Example rot v • Assume a flow field v = (v x ,v y ,v z ) = (k·y,0,0), Transport processes (TRP) with a constant y. v y • For this case    v  v    y z    y z    0 0   0  x         v v         rot v v x z  0 0   0      z x         0 k k      v  v   y  x     x y   • gives a vector with a non-zero component in z-direction. VST rz18

  5. 9/42 4 Transport processes (TRP)    ( x , y )        d dx dy   x y    v dx v dy y x VST rz18 10/42 4 Transport processes (TRP)       0 for any scalar      v 0 for any vector v F    (Similarly , for an electric field E and electric force F : E elec voltage for an electric charge q ) elec elec elec q VST rz18

  6. 11/42 4 Transport processes (TRP)    i . e . 2 0   ( x , y )      v v ( x , y ) v ( x , y ) v  x   y y y x         continuity : v dx dx etc . x      x y y y y VST rz18 12/42 4 Transport processes (TRP) r θ VST rz18

  7. 13/42 4 Transport processes (TRP) note: constant A = A(4.23)·C(4.25) VST rz18 14/42 4 Transport processes (TRP) VST rz18

  8. Transport processes (TRP) Transport processes (TRP) ½ρv 2 +p+ρgh = constant VST rz18 VST rz18 16/42 4 15/42 4

  9. Transport processes (TRP) Transport processes (TRP) paradox D’Alembert VST rz18 VST rz18 18/42 4 17/42 4

  10. Creeping flow z=h Transport processes (TRP) v x , v y , v z z z=0 y x  p • The expression (4.38) gives, with v z << v y and << v x    v μ               v v v   v v v p p    y  y  y  x x x and               x y z μ x x y z μ y which with ∂v x /∂y and ∂v x /∂x << ∂v x /∂z, and similarly ∂v y /∂y and ∂v y /∂x << ∂v y /∂z simplifies to (4.39, 4.40)       v   v p p  y  x and       z μ x z μ y VST rz18 20/42 4 Transport processes (TRP)   p 6 µ p 6 µ     v and v x , mean y , mean  2  2 x x h h 2 ph     potential flow function 6 µ VST rz18

  11. 21/42 4 Re << 1 Transport processes (TRP) VST rz18 22/42 A classroom exercise - 4 • An inviscid incompressible fluid flow can be Transport processes (TRP) described by a two-dimensional stream function ψ(x,y) and potential Φ, for –L ≤ x ≤ L, –L ≤ y ≤ L . With velocity v ∞ at x = L, y = L, the velocity potential Φ is given by : Φ = v ∞ · x· y /L. • Give the expression for the velocity vector v(x,y) = (v x ,v y ) and for the stream function ψ(x,y). VST rz18

  12. Transport processes (TRP) Transport processes (TRP) VST rz18 VST rz18 24/42 4 23/42 4

  13. Transport processes (TRP) Transport processes (TRP) @ y ≥ δ(x) : v y = 0 VST rz18 VST rz18 26/42 4 25/42 4

  14. Transport processes (TRP) Transport processes (TRP)  ~  V  x VST rz18 VST rz18 28/42 4 27/42 4

  15. 29/42 4 Transport processes (TRP) VST rz18 30/42 4 Transport processes (TRP) y   , V (or V ) free flow velocity (Fig. 4.4)      A ( x ) f ( )  df ( )      v x V f ' ( ) V  d VST rz18

  16. 31/42 4  df ( )      v x V f ' ( ) V  d Transport processes (TRP) 3 2 d f d f    f 2   d 3 d 2 see next 4 slides VST rz18 Boundary layers – Blasius /1 • The starting point for Blasius’ analysis are Prandtl’s boundary layer equations, which with dp/dx ≈ 0 (or Transport processes (TRP) at least dp/dx << the other terms) are with boundary conditions v ∞ =v ∞ (x) in the undisturbed flow, v x =v y =0 at x=0, v x =v ∞ at y=∞. • Considering a two-dimensional flow (i.e. symmetry in third dimension) described by stream function ψ(x,y) and introducing a dimensionless variable η(x,y) = y/√( ν · x/v ∞ ) ~ y/δ gives a function f(η): VST rz18

  17. Boundary layers – Blasius /2 • Producing from this the terms for the Prandtl equations gives result Transport processes (TRP) where f´ = ∂f/∂η, f´´ = ∂ 2 f/∂η 2 and noting that ∂f/∂x = ∂f/∂η·∂η/∂x = f´·∂η/∂x and ∂f/∂y = ∂f/∂η·∂η/∂y = f´·∂η/∂y • Using this in Prandtl’s equation gives finally with boundary conditions VST rz18 Boundary layers – Blasius /3 • A numerical solution was produced by Howarth (1938) Transport processes (TRP) VST rz18

  18. Boundary layers – Blasius /4 • Note that the equation (4.63), however, defines η(x,y) as which differs Transport processes (TRP) by a factor 2 from the expression used by Blasius. • This then gives instead of f´´´+ f·f´´ = 0 the expression 2·f´´´+ f·f´´ = 0 with boundary conditions f(0) = f´(0) = 0 and f´(∞) = 1. • The numerical solution for this is given in the table:      v v d      y     Note : x dy dy v dy v ( ) x y   x y dx 0 0 0 VST rz18 36/42 4  v 0 y Transport processes (TRP)     v v     y Note : x dy dy   x y 0 0  d      v dy v ( ) x y dx 0 use Leibniz VST rz18

  19. Transport processes (TRP) Transport processes (TRP) V v y   b 0   b b 3 1     3   b b 4 2     4 2 VST rz18 VST rz18 38/42 4 37/42 4

  20. 39/42 4 Transport processes (TRP)     v v V         x x  ( 2 3 ) 2 3 3      y y 2 V 2 µV          (@ 0 )  0  VST rz18 40/42 A classroom exercise - 5 • Blasius’ boundary layer analysis describes the Transport processes (TRP) velocity profile (v x ,v y ) in a laminar boundary layer with a function f(η) where η = ½y√(v ∞ /xν) = ψ(x,y)/√(v ∞ xν), with kinematic viscosity ν, position x along the surface on which the boundary layer builds up, position y from the surface, and undisturbed flow (v ∞ , 0). See course material § 4.3.2 + added material. (continues) VST rz18

  21. 41/42 A classroom exercise - 5 • Using the analytical solution by Howarth, given in the Transport processes (TRP) table for η, f´(η)= ∂f/∂η and f´´(η)= ∂²f/∂η², show that the thickness of the boundary layer, defined by v x /v ∞ = 0.99, can be approximated by  5 v x    with Re x x ν Re x VST rz18 Sources used 42/42 4 (besides course book Hanjalić et al. ) • Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. ”Transport phenomena” Wiley, 2nd edition (1999) Transport processes (TRP) • R.B. Bird, W.E. Stewart, E.N. Lightfoot ”Transport phenomena” Wiley, New York (1960) • * C.J. Hoogendoorn ”Fysische Transportverschijnselen II”, TU Delft / D.U.M., the Netherlands 2nd. ed. (1985) • * C.J. Hoogendoorn, T.H. van der Meer ”Fysische Transport- verschijnselen II”, TU Delft /VSSD, the Netherlands 3nd. ed. (1991) • J.R. Welty, C.E. Wicks, R.E. Wilson. “Fundamentals of momentum, heat and mass transfer” Wiley New York (1969) * Earlier versions of Hanjalić et al. book but in Dutch VST rz18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend