tractability of multivariate integration in hermite spaces
play

Tractability of Multivariate Integration in Hermite Spaces Friedrich - PowerPoint PPT Presentation

Tractability of Multivariate Integration in Hermite Spaces Friedrich Pillichshammer 1 JKU Linz/Austria Joint work with Ch. Irrgeher, P. Kritzer and G. Leobacher (JKU Linz) 1 Supported by the Austrian Science Fund (FWF), Project F5509-N26.


  1. Tractability of Multivariate Integration in Hermite Spaces Friedrich Pillichshammer 1 JKU Linz/Austria Joint work with Ch. Irrgeher, P. Kritzer and G. Leobacher (JKU Linz) 1 Supported by the Austrian Science Fund (FWF), Project F5509-N26. Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 1 / 25

  2. Multivariate integration over R s – linear algorithms We study the numerical approximation of integrals � I s ( f ) = R s f ( x ) ϕ s ( x ) d x , where ϕ s is the density of the s -dimensional standard Gaussian measure, and f ∈ H ( K ) (RKHS) with norm � · � K . We use linear algorithms n � A n , s ( f ) = α k f ( t k ) k =1 for α k ∈ R and t k ∈ R s . Linear algorithms are optimal (Smolyak 1965, Bakhvalov 1971) Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 2 / 25

  3. Multivariate integration over R s – worst-case setting Worst-case error : e ( A n , s , K ) = sup | I s ( f ) − A n , s ( f ) | . f ∈H ( K ) � f � K ≤ 1 n th minimal worst-case error : e ( n , s ) = inf A n , s e ( A n , s , K ) . Initial error : For n = 0, we approximate I s ( f ) by zero, and e (0 , s ) = � I s � for all s ∈ N . Information complexity : For ε ∈ (0 , 1), n ( ε, s ) = min { n : e ( n , s ) ≤ ε e (0 , s ) } . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 3 / 25

  4. Smoothness of the problems We study problems with infinite smoothness. It is natural to demand more ◮ of the n th minimal errors e ( n , s ) and ◮ of the information complexity n ( ε, s ) than for those cases where we only have finite smoothness. For problems with unbounded smoothness we are interested in obtaining (uniform) exponential convergence of the minimal errors. Well studied: Korobov spaces of periodic functions over [0 , 1] s with infinite smoothness (Dick, Kritzer, Larcher, Wo´ zniakowski) Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 4 / 25

  5. Exponential convergence Definition Exponential convergence (EXP) if ∃ q ∈ (0 , 1) and functions p , C , C 1 : N → (0 , ∞ ) such that e ( n , s ) ≤ C ( s ) q ( n / C 1 ( s )) p ( s ) for all s , n ∈ N . The largest possible rate of EXP is � p > 0 : ∃ C , C 1 > 0 s.t. ∀ n ∈ N : e ( n , s ) ≤ Cq ( n / C 1 ) p � p ∗ ( s ) = sup . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 5 / 25

  6. Uniform exponential convergence Definition Uniform exponential convergence (UEXP) if ∃ q ∈ (0 , 1) , ∃ p > 0 and functions C , C 1 : N → (0 , ∞ ) such that e ( n , s ) ≤ C ( s ) q ( n / C 1 ( s )) p for all s , n ∈ N . The largest rate of UEXP is � p ∗ = sup p > 0 : ∃ C , C 1 : N → (0 , ∞ ) s.t. ∀ n , s ∈ N : e ( n , s ) ≤ C ( s ) q ( n / C 1 ( s )) p � . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 6 / 25

  7. Exponential convergence UEXP implies � � 1 / p � � log C ( s ) + log ε − 1 n ( ε, s ) ≤ C 1 ( s ) for all s ∈ N , ε ∈ (0 , 1) . log q − 1 �� log ε − 1 � 1 / p � With respect to ε → 0, we need O function values to reduce the initial error by a factor of ε . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 7 / 25

  8. EC-tractability (a) Exponential Convergence-Weak Tractability (EC-WT) if log n ( ε, s ) lim s + log ε − 1 = 0 . s + ε − 1 →∞ (b) Exponential Convergence-Polynomial Tractability (EC-PT) if ∃ c , τ 1 , τ 2 > 0 such that n ( ε, s ) ≤ c s τ 1 (1 + log ε − 1 ) τ 2 for all s ∈ N , ε ∈ (0 , 1) . (c) Exponential Convergence-Strong Polynomial Tractability (EC-SPT) if ∃ c , τ > 0 such that n ( ε, s ) ≤ c (1 + log ε − 1 ) τ for all s ∈ N , ε ∈ (0 , 1) . The exponent τ ∗ of EC-SPT is the infimum of τ for which EC-SPT holds, i.e., τ ∗ = inf { τ ≥ 0 : ∃ c > 0 s.t. n ( ε, s ) ≤ c (1 + log ε − 1 ) τ ∀ s , ε } . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 8 / 25

  9. EC-tractability Proposition 1 EC-SPT ⇒ EC-PT ⇒ UEXP 2 EC-WT ⇒ lim n →∞ n α e ( n , s ) = 0 for all α > 0 3 If we have UEXP ( e ( n , s ) ≤ C ( s ) q ( n / C 1 ( s )) p ), then: ◮ C ( s ) = exp(exp( o ( s ))) and C 1 ( s ) = exp( o ( s )) ⇒ EC-WT ◮ C ( s ) = exp( O ( s τ )) and C 1 ( s ) = O ( s η ) ⇒ EC-PT ◮ C ( s ) = O (1) and C 1 ( s ) = O (1) ⇒ EC-SPT Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 9 / 25

  10. Hermite polynomials Univariate Hermite polynomials H k ( x ) = ( − 1) k d k x 2 d x k e − x 2 √ for k ∈ N 0 , x ∈ R e 2 2 k ! � E.g. H 0 ( x ) = 1, H 1 ( x ) = x , H 2 ( x ) = x 2 2 , H 3 ( x ) = x 3 1 3 2 − 3 − 2 x √ √ √ Multivariate Hermite polynomials s � for k ∈ N s 0 , x ∈ R s H k ( x ) = H k j ( x j ) j =1 0 is an ONB of L 2 ( R s , ϕ s ) ( H k ) k ∈ N s Hermite expansion of f ∈ L 2 ( R s , ϕ s ): � � f ( x ) ∼ f ( k ) H k ( x ) k ∈ N s 0 � with k th Hermite coefficient � f ( k ) = R s f ( x ) H k ( x ) ϕ s ( x ) d x Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 10 / 25

  11. Hermite spaces 0 → R + be a summable function. Let r : N s Define a kernel � for x , y ∈ R s , K r ( x , y ) = r ( k ) H k ( x ) H k ( y ) k ∈ N s 0 and a inner product � 1 � � f , g � K r := f ( k ) � g ( k ) . r ( k ) k ∈ N s 0 Let � f � 2 K r = � f , f � K r . We call the RKHS H ( K r ) a Hermite space . Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 11 / 25

  12. The Hermite space H ( K s , a , b ,ω ) Let a = { a j } j ≥ 1 and b = { b j } j ≥ 1 , where we assume that 1 ≤ a 1 ≤ a 2 ≤ a 3 ≤ . . . and 1 ≤ b 1 ≤ b 2 ≤ b 3 ≤ . . . . Fix ω ∈ (0 , 1). For a vector k = ( k 1 , . . . , k s ) ∈ N s 0 , consider bj � s j =1 a j k j . r ( k ) = ω We modify the notation for the kernel function to � bj � s j =1 a j k j H k ( x ) H k ( y ) . K s , a , b ,ω ( x , y ) := ω k ∈ N s 0 Proposition f ∈ H ( K s , a , b ,ω ) ⇒ f is analytic R [ x ] ⊂ H ( K s , a , b ,ω ) f ( x ) = exp( λ · x ) belongs to H ( K s , a , b ,ω ) for suitable a , b e (0 , s ) = 1 Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 12 / 25

  13. The main result Main Theorem 1 EXP holds for all a and b and s � p ∗ ( s ) = 1 / B ( s ) b − 1 with B ( s ) := . j j =1 2 Let B := � ∞ j =1 b − 1 . Then j B < ∞ ⇔ UEXP ⇔ EC-PT ⇔ EC-SPT and p ∗ = 1 / B and the exponent τ ∗ of EC-SPT is B . 3 EC-WT ⇒ lim j →∞ a j 2 b j = ∞ 4 lim j →∞ a j = ∞ ⇒ EC-WT Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 13 / 25

  14. Remarks on the theorem We always have EXP, independent of a and b . The best rate p ∗ ( s ) is 1 / B ( s ), which decreases for growing s . A necessary and sufficient condition for UEXP, EC-PT and EC-SPT is that ∞ � b − 1 B = < ∞ j j =1 with no extra conditions on a and ω . The best rate p ∗ is 1 / B < 1. Small B implies a large p ∗ . a and ω have no influence on UEXP, EC-PT and EC-SPT. There is a gap between the necessary and sufficient condition for EC-WT. The results for EXP, UEXP, EC-PT and EC-SPT are constructive. Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 14 / 25

  15. Gauss-Hermite rules – one-dimensional case A Gauss-Hermite rule of order n is a linear integration rule A n of the form n � A n ( f ) = α i f ( x i ) i =1 that is exact for all p ∈ R [ x ] with deg( p ) < 2 n , i.e. � p ( x ) ϕ ( x ) d x = A n ( p ) ∀ p ∈ R [ x ] with deg( p ) < 2 n . R The nodes x 1 , . . . , x n ∈ R are exactly the zeros of the n th Hermite polynomial H n and the weights are given by 1 α i = n − 1 ( x i ) . nH 2 Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 15 / 25

  16. Gauss-Hermite rules – multivariate case For j = 1 , 2 , . . . , s let m j � A ( j ) α ( j ) i f ( x ( j ) m j ( f ) = ) i i =1 Let n = m 1 m 2 · · · m s and set A n , s = A (1) m 1 ⊗ · · · ⊗ A ( s ) m s , i.e., for f ∈ H ( K s , a , b ,ω ) m 1 m s � � α (1) i 1 · · · α ( s ) i s f ( x (1) i 1 , . . . , x ( s ) A n , s ( f ) = . . . i s ) . i 1 =1 i s =1 Proposition � � √ s � 8 π 1 + ω a j (2 m j ) bj e 2 ( A n , s , K s , a , b ,ω ) ≤ − 1 + . 1 − ω 2 j =1 Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 16 / 25

  17. Gauss-Hermite rules – multivariate case Theorem For s ∈ N , let B ( s ) := � s j =1 b − 1 . For ε ∈ (0 , 1), let j  B ( s )  � √ �   8 π s log  1  1 − ω 2 log(1+ ε 2 )   m = max .    log ω − 1  a j j =1 , 2 ,..., s   and define m j := ⌊ m 1 / ( B ( s ) · b j ) ⌋ . Then � � 1 + 1 n ( ε, s ) ≪ s log B ( s ) e ( A n , s , K s , a , b ,ω ) ≤ ε and . ε This implies EXP. Friedrich Pillichshammer (JKU Linz/Austria) Multivariate Integration in Hermite Spaces 17 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend