a regularized least squares method for sparse low rank
play

A regularized least-squares method for sparse low-rank approximation - PowerPoint PPT Presentation

Workshop Numerical methods for high-dimensional problems April 18, 2014 A regularized least-squares method for sparse low-rank approximation of multivariate functions Mathilde Chevreuil joint work with Prashant Rai, Loic Giraldi, Anthony


  1. Workshop “Numerical methods for high-dimensional problems” April 18, 2014 A regularized least-squares method for sparse low-rank approximation of multivariate functions Mathilde Chevreuil joint work with Prashant Rai, Loic Giraldi, Anthony Nouy GeM – Institut de Recherche en G´ enie Civil et M´ ecanique LUNAM Universit´ e UMR CNRS 6183 / Universit´ e de Nantes / Centrale Nantes

  2. Motivations Chorus ANR project • Aero-thermal regulation in an aircraft cabin 39 random parameters Data basis of 2000 evaluations of the model Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 2

  3. Motivations • In telecommunication: electromagnetic field and the Specific Absorption Rate (SAR) induced in the body Over 4 random parameters FDTD method: 2 days/run. Few evaluations of the model available Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 3

  4. Motivations • In telecommunication: electromagnetic field and the Specific Absorption Rate (SAR) induced in the body Over 4 random parameters FDTD method: 2 days/run. Few evaluations of the model available Aim Construct a surrogate model of the true model from a small collection of evaluations of the true model that allows fast evaluations of output quantities of interest, observables or objective function. Propagation: estimation of quantiles, sensitivity analysis ... Optimization or identification Probabilistic inverse problem Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 3

  5. ξ Uncertainty quantification using functional approaches • Stochastic/parametric models Uncertainties represented by “simple” random variables ξ = ( ξ 1 , · · · , ξ d ) : Θ → Ξ defined on a probability space (Θ , B , P ). u (ξ) Model Ideal approach Compute an accurate and explicit representation of u ( ξ ): � u ( ξ ) ≈ u α φ α ( ξ ) , ξ ∈ Ξ α ∈ I P where the φ α ( ξ ) constitute a suitable basis of multiparametric functions Polynomial chaos [Ghanem and Spanos 1991, Xiu and Karniadakis 2002, Soize and Ghanem 2004] Piecewise polynomials, wavelets [Deb 2001, Le Maˆ ıtre 2004, Wan 2005] Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 4

  6. Motivations • Aproximation spaces S P = span { φ α ( ξ ) = φ (1) α 1 ( ξ 1 ) . . . φ ( d ) α d ( ξ d ); α ∈ I P } with a pre-defined index set I P , e.g. � � � � � � α ∈ N d ; | α | ∞ ≤ r α ∈ N d ; | α | 1 ≤ r α ∈ N d ; | α | q ≤ r ⊃ ⊃ , 0 < q < 1 Issue • Approximation of a high dimensional function u ( ξ ), ξ ∈ Ξ ⊂ R d #( I P ) ≈ 10 , 10 10 , 10 100 , 10 1000 , ... • Use of deterministic solvers in a black box manner Numerous evaluations of possibly fine deterministic models Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 5

  7. Motivations Objective Compute an approximation of u ∈ S P � u ( ξ ) ≈ u α φ α ( ξ ) α ∈ I P using few samples { u ( y q ) } Q q =1 where { y q } Q q =1 is a collection of sample points and the u ( y q ) are solutions of the deterministic problem Exploit structures of u ( ξ ) u ( ξ ) can be sparse on particular basis functions u ( ξ ) can have suitable low rank representations Can we exploit sparsity within low rank structure of u ? Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 6

  8. Outline Motivations and framework 1 Sparse low rank approximation 2 Tensor formats and algorithms 3 Canonical decomposition Tensor Train format Conclusion 4 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 7

  9. Outline Motivations and framework 1 Sparse low rank approximation 2 Tensor formats and algorithms 3 Canonical decomposition Tensor Train format Conclusion 4 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 7

  10. Low rank approximation Approximation of function u using tensor approximation methods • Exploit the tensor structure of function space � P k � S P = S 1 P 1 ⊗ . . . ⊗ S d S k φ ( k ) P d ; P k = span i i =1 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 8

  11. Low rank approximation Approximation of function u using tensor approximation methods • Exploit the tensor structure of function space � P k � S P = S 1 P 1 ⊗ . . . ⊗ S d S k φ ( k ) P d ; P k = span i i =1 • Low rank tensor subsets M M = { v = F M ( p 1 , p 2 , . . . , p n ) } with dim ( M ) = O ( d ) [Nouy 2010, Khoromskij and Schwab 2010, Ballani 2010, Beylkin et al 2011, Matthies and Zander 2012, Doostan et al 2012, ...] Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 8

  12. Low rank approximation Approximation of function u using tensor approximation methods • Exploit the tensor structure of function space � P k � S P = S 1 P 1 ⊗ . . . ⊗ S d S k φ ( k ) P d ; P k = span i i =1 • Low rank tensor subsets M M = { v = F M ( p 1 , p 2 , . . . , p n ) } with dim ( M ) = O ( d ) [Nouy 2010, Khoromskij and Schwab 2010, Ballani 2010, Beylkin et al 2011, Matthies and Zander 2012, Doostan et al 2012, ...] • Sparse low rank tensor subsets M m -sparse , ideally M m -sparse = { v = F M ( p 1 , p 2 , . . . , p n ); � p i � 0 ≤ m i ; 1 ≤ i ≤ n } with dim ( M m -sparse ) ≪ dim ( M ) . Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 8

  13. Low rank approximation Least-squares in low rank subsets • Approximation of v ( ξ ) ∈ M defined by Q v ∈ M � u − v � 2 � u − v � 2 � | u ( y k ) − v ( y k ) | 2 min with Q = Q k =1 [Beylkin et al 2011, Doostan et al 2012] Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 9

  14. Low rank approximation Least-squares in low rank subsets • Approximation of v ( ξ ) ∈ M defined by Q v ∈ M � u − v � 2 � u − v � 2 � | u ( y k ) − v ( y k ) | 2 min with Q = Q k =1 [Beylkin et al 2011, Doostan et al 2012] • Approximation of v ( ξ ) ∈ M m − sparse defined by v ∈ M � u − v � 2 min Q s.t. � p i � 0 ≤ m i Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 9

  15. Low rank approximation Least-squares in low rank subsets • Approximation of v ( ξ ) ∈ M defined by Q v ∈ M � u − v � 2 � u − v � 2 � | u ( y k ) − v ( y k ) | 2 min with Q = Q k =1 [Beylkin et al 2011, Doostan et al 2012] • Approximation of v ( ξ ) ∈ M m − sparse defined by n v ∈ M � u − v � 2 v ∈ M � u − v � 2 � min Q s.t. � p i � 0 ≤ m i → min Q + λ i � p i � 1 (Lasso) i =1 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 9

  16. Low rank approximation Least-squares in low rank subsets • Approximation of v ( ξ ) ∈ M defined by Q v ∈ M � u − v � 2 � u − v � 2 � | u ( y k ) − v ( y k ) | 2 min with Q = Q k =1 [Beylkin et al 2011, Doostan et al 2012] • Approximation of v ( ξ ) ∈ M m − sparse defined by n v ∈ M � u − v � 2 v ∈ M � u − v � 2 � min Q s.t. � p i � 0 ≤ m i → min Q + λ i � p i � 1 (Lasso) i =1 Alternating least-squares with sparse regularization For 1 ≤ i ≤ n and for fixed p j with j � = i p i � u − F M ( p 1 , . . . , p i , . . . , p n ) � 2 min Q + λ i � p i � 1 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 9

  17. Outline Motivations and framework 1 Sparse low rank approximation 2 Tensor formats and algorithms 3 Canonical decomposition Tensor Train format Conclusion 4 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 10

  18. Approximation in canonical tensor subset Rank-one canonical tensor subset � w = w (1) ⊗ . . . ⊗ w ( d ) ; w ( k ) ∈ S k P k s.t. w ( k ) ( ξ k ) = φ ( k ) ( ξ k ) T w ( k ) � R 1 = Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 11

  19. Approximation in canonical tensor subset Rank-one canonical tensor subset � w = � φ , w (1) ⊗ . . . ⊗ w ( d ) � ; w ( k ) ∈ R P k � R 1 = � φ (1) ⊗ . . . ⊗ φ ( d ) � ( ξ ) and with dim ( R 1 ) = � d where φ = k =1 P k Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 11

  20. Approximation in canonical tensor subset Rank-one canonical tensor subset � w = � φ , w (1) ⊗ . . . ⊗ w ( d ) � ; w ( k ) ∈ R P k , � w ( k ) � 1 ≤ γ k � R γ 1 = � φ (1) ⊗ . . . ⊗ φ ( d ) � 1 ) = � d where φ = ( ξ ) and with dim ( R γ k =1 P k Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 11

  21. Approximation in canonical tensor subset Rank-one canonical tensor subset � w = � φ , w (1) ⊗ . . . ⊗ w ( d ) � ; w ( k ) ∈ R P k , � w ( k ) � 1 ≤ γ k � R γ 1 = � φ (1) ⊗ . . . ⊗ φ ( d ) � 1 ) = � d where φ = ( ξ ) and with dim ( R γ k =1 P k Rank- m tensor subsets m R γ 1 ,..., γ m w i ; w i ∈ R γ i � = { v = 1 } m i =1 Motivations and framework Sparse LR approx. Tensor formats & alg. Conclusion 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend