statistical geometry processing
play

Statistical Geometry Processing Winter Semester 2011/2012 - PowerPoint PPT Presentation

Statistical Geometry Processing Winter Semester 2011/2012 Least-Squares Least-Squares Fitting Approximation Common Situation: We have many data points, they might be noisy Example: Scanned data Want to approximate the data with a


  1. Statistical Geometry Processing Winter Semester 2011/2012 Least-Squares

  2. Least-Squares Fitting

  3. Approximation Common Situation: • We have many data points, they might be noisy • Example: Scanned data • Want to approximate the data with a smooth curve / surface What we need: • Criterion – what is a good approximation? • Methods to compute this approximation 3

  4. Approximation Techniques Agenda: • Least-squares approximation (and why/when this makes sense) • Total least-squares linear approximation (get rid of the coordinate system) • Iteratively reweighted least-squares (for nasty noise distributions) 4

  5. Least-Squares We assume the following scenario: • Given: Function values y i at positions x i . (1D  1D for now) • Independent variables x i known exactly. • Dependent variables y i with some error. • Error Gaussian, i.i.d.  normal distributed  independent  same distribution at every point • We know the class of functions 5

  6. Situation y 1 y 2 y n x n x 1 x 2 Situation: • Original sample points taken at x i from original f . • Unknown Gaussian iid noise added to each y i . ~ • Want to estimated reconstructed f . 6

  7. Summary Statistical model yields least-squares criterion: ~ n   2 arg min ( f ( x ) y ) i i ~ f i  1 Linear function space leads to quadratic objective: 2     ~ k n k            f x : b x   arg min b ( x ) y     j j j j i i       λ i  1 j  1 j  1 Critical point: linear system n           b , b : b ( x ) b ( x ) b , b b , b y , b      i j i t j t 1 1 1 k  1  1 t  1        with:      n          y , b : b ( x ) y  b , b b , b y , b        i i t t k 1 k k k k t  1 7

  8. Maximum Likelihood Estimation Goal: • Maximize the probability that the data originated from ~ the reconstructed curve f . • “Maximum likelihood estimation”     2   1 x     p ( x ) exp    ,   2 2  2 π   Gaussian normal distribution 8

  9. Maximum Likelihood Estimation ~    2 n ~ n 1 ( f ( x ) y )        arg max N ( f ( x ) y ) arg max exp i i    0 , i i  2 2 ~ ~  2 π   f f   i 1 i 1 ~    2 n ( f ( x ) y ) 1      arg max ln exp i i    2 2 ~  2 π   f  i 1 ~      2 ( f ( x ) y ) n 1      arg max ln i i      2 2 ~  2 π       f  i 1 ~  2 ( f ( x ) y ) n   arg min i i  2 2 ~ f  i 1 n ~    2 arg min ( f ( x ) y ) i i ~ f  i 1 9

  10. Maximum Likelihood Estimation ~    2 n ~ n 1 ( f ( x ) y )        arg max N ( f ( x ) y ) arg max exp i i    0 , i i  2 2 ~ ~  2 π   f f   i 1 i 1 ~    2 n ( f ( x ) y ) 1      arg max ln exp i i    2 2 ~  2 π   f  i 1 ~      2 ( f ( x ) y ) n 1      arg max ln i i      2 2 ~  2 π       f  i 1 ~  2 ( f ( x ) y ) n   arg min i i  2 2 ~ f  i 1 n ~    2 arg min ( f ( x ) y ) i i ~ f  i 1 10

  11. Least-Squares Approximation This shows: • Maximum likelihood estimate minimizes sum of squared errors Next: Compute optimal coefficients ~ k        f x : b x • Linear ansatz: j j j  1 • Determine optimal  i 11

  12. Maximum Likelihood Estimation         b ( x )   b ( x )   y   1   1   i 1   1          λ : , b ( x ) : , b : y :                 k entries k entries n entries, n entries i              b ( x ) b ( x ) y             k k i n n 2     n ~ n k      2     arg min ( f ( x ) y ) arg min  b ( x ) y    i i j j i i     λ λ   i  1 i  1 j  1   n  2  T  arg min λ b ( x ) y i i λ  i 1     n n n     2   T T  T  x x y x y arg min λ b ( ) b ( ) λ 2 λ b ( )     i i i i i     λ    i 1 i 1 i 1 x T Ax bx c  Quadratic optimization problem 12

  13. Critical Point         b ( x )   b ( x )   y   1   1   i 1   1          λ : , b ( x ) : , b : y :                 k entries k entries n entries, n entries i              b ( x ) b ( x ) y             k k i n n     n n n      2 T T T    λ b ( x ) b ( x ) λ 2 y λ b ( x ) y     λ i i i i i     i  1 i  1 i  1   T y b   1   n  T     2 b ( x ) b ( x ) λ 2    i i       i  1 T y b   k We obtain a linear system of equations:   T y b   1    n T    b ( x ) b ( x ) λ    i i        i 1 T y b   k 13

  14. Critical Point This can also be written as:        b , b b , b y , b      1 1 1 k  1  1                    b , b b , b y , b        k 1 k k k k with: n    b , b : b ( x ) b ( x ) i j i t j t  t 1 n    y , b : b ( x ) y i i t t  t 1 14

  15. Summary (again) Statistical model yields least-squares criterion: ~ n   2 arg min ( f ( x ) y ) i i ~ f i  1 Linear function space leads to quadratic objective: 2     ~ k n k            f x : b x   arg min b ( x ) y     j j j j i i       λ i  1 j  1 j  1 Critical point: linear system n           b , b : b ( x ) b ( x ) b , b b , b y , b      i j i t j t 1 1 1 k  1  1 t  1        with:      n          y , b : b ( x ) y  b , b b , b y , b        i i t t k 1 k k k k t  1 15

  16. Variants Weighted least squares: • In case the data point’s noise has different standard deviations  at the different data points • This gives a weighted least squares problem • Noisier points have smaller influence 16

  17. Same procedure as prev. slides... ~    2 n ~ n ( f ( x ) y ) 1        arg max N ( f ( x ) y ) arg max exp i i    i i 2  ~ ~  2 2 π   f f   i 1 i 1 i i ~    2 n ( f ( x ) y ) 1      arg max log exp i i   2  ~  2 2 π   f  i 1 i i ~      2 n 1 ( f ( x ) y )        arg max log i i   2  ~   2  2 π   f    i 1 i i ~  2 n ( f ( x ) y )   arg min i i 2  ~ 2 f  i 1 i n 1 ~    2 arg min ( f ( x ) y ) i i 2  ~ f  i 1  i weights 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend