on the extreme eigenvalues of certain gram matrices of
play

On the Extreme Eigenvalues of Certain Gram Matrices of Hermite - PowerPoint PPT Presentation

On the Extreme Eigenvalues of Certain Gram Matrices of Hermite Polynomials q Martin Ple singer & Ivana Pultarov a KMD TU Liberec, KO-MIX Lectures March 18, 2019 I. Hermite Polynomials Motivation & Introduction Monic


  1. On the Extreme Eigenvalues of Certain Gram Matrices of Hermite Polynomials q Martin Pleˇ singer & Ivana Pultarov´ a KMD TU Liberec, KO-MIX Lectures — March 18, 2019

  2. I. Hermite Polynomials

  3. Motivation & Introduction Monic Hermite polynomials (MHP) h 0 ( x ) = 1 , h 1 ( x ) = x, h 2 ( x ) = x 2 − 1 , h 3 ( x ) = x 3 − 3 x, h 4 ( x ) = x 4 − 6 x 2 + 3 , h 5 ( x ) = x 5 − 10 x 3 + 15 x, . . . given by recursive schemes h m +1 = xh m ( x ) − h ′ h 0 ( x ) = 1 , m ( x ) , m = 0 , 1 , 2 , . . . , or h 0 ( x ) = 1 , h 1 ( x ) = x, h m +1 = xh m ( x ) − mh m − 1 ( x ) , m = 1 , 2 , . . . , are orthogonal w.r.t. inner-product � ̺ ( x ) = e − x 2 � 2 . � f, g � = f ( x ) g ( x ) ̺ ( x )d x, � f � = � f, f � . R Sometimes h j ( x ) are called probabilists’ HP’s; the physicists’ HP’s use ̺ ( x ) = e − x 2 .

  4. The first six Hermite polynomials 10 8 6 4 2 0 -2 -4 -6 -8 -10 -3 -2 -1 0 1 2 3

  5. Since √ � h m , h m � = � h m � 2 = 2 π m ! , m = 0 , 1 , . . . , then h m ( x ) h m ( x ) p m ( x ) = � h m ( x ) � = √ , � p m , p k � = δ m,k , m, k = 0 , 1 , . . . , √ 4 2 π m ! are normalized Hermite polynomials (NHP). q Note that HP’s have symmetric distribution of roots: 0 = h m ( x ) = p m ( x ) ⇐ ⇒ p m ( − x ) = h m ( − x ) = 0 .

  6. Shifted inner-product Let us consider � f ( x ) g ( x )e − x 2 2 + αx d x, � f, g � α = α ∈ R . R Since 2 + αx = − x 2 − 2 αx + α 2 − α 2 − x 2 = − ( x − α ) 2 + α 2 2 2 2 then � f ( x ) g ( x )e − ( x − α ) 2 α 2 � f, g � α = e d x 2 2 R � α 2 f ( x + α ) g ( x + α )e − x 2 α 2 2 d x = e 2 � f ( x + α ) , g ( x + α ) � = e 2 R Trivially � f, g � 0 ≡ � f, g � . Shifted inner-product of HP’s ≡ the standard inner-product of shifted HP’s (up to the scaling factor). Note that �· , ·� and �· , ·� α live on different spaces, but P’s are subspaces of both; � 1 2( x 2 2 − αx ) e x ≥ 0 let α > 0, then try f ( x ) = g ( x ) = 0 x < 0

  7. Shifted Hermite polynomials We are interested in spectral properties of Gram matrices of NHP’s w.r.t. shifted inner-product. Shifted MHP as linear combination of MHP’s h 0 ( x + α ) = 1 = h 0 ( x ) , h 1 ( x + α ) = x + α = h 1 ( x ) + αh 0 ( x ) , h 2 ( x + α ) = x 2 + 2 αx + α 2 − 1 = h 1 ( x ) + 2 αh 1 ( x ) + α 2 h 0 ( x ) , h 3 ( x + α ) = x 3 + 3 αx 2 + 3 α 2 x + α 3 − 3 x − 3 α = h 3 ( x ) + 3 αh 2 ( x ) + 3 α 2 h 1 ( x ) + α 3 h 0 ( x ) . There is a clear pattern m � m � � α m − ℓ h ℓ ( x ) . h m ( x + α ) = ℓ ℓ =0 Proof by induction employs recurrent formula h s +1 = xh s ( x ) − h ′ s ( x ).

  8. Shifted inner-product of HP’s √ √ 4 Recalling � h ℓ ( x ) � = 2 π ℓ !, the shifted inner-products of MHP & NHP are α 2 2 � h m ( x + α ) , h k ( x + α ) � � h m , h k � α = e � m � k � m � � k � α 2 � � α m − ℓ h ℓ ( x ) , α k − ℓ h ℓ ( x ) = e 2 ℓ ℓ ℓ =0 ℓ =0 min( m,k ) � m �� k � α 2 � α m + k − 2 ℓ � h ℓ ( x ) � 2 = e 2 ℓ ℓ ℓ =0 min( m,k ) α m + k − 2 ℓ √ � m �� k � α 2 � = e 2 π ℓ ! , 2 ℓ ℓ ℓ =0 q α 2 min( m,k ) � m �� k � � h m , h k � α e 2 � α m + k − 2 ℓ ℓ ! . � p m , p k � α = √ √ = √ √ √ ℓ ℓ 2 π m ! k ! m ! k ! ℓ =0

  9. II. Gram Matrices

  10. Gram matrix of NHP’s. Basic properties Let A α ∈ R ( N +1) × ( N +1) , α 2 min( m,k ) e � m �� k � 2 � α m + k − 2 ℓ ℓ ! , ( A α ) m +1 ,k +1 = � p m , p k � α = √ √ m, k = 0 , 1 , . . . , N. ℓ ℓ m ! k ! ℓ =0 • A α is symmetric positive definite.  α > 0 , A α > 0 ,  • For α = 0 , A α = I,  α < 0 , A α has nonzero entries with chess-board structure of sign pattern, i.e.,   + − + · · · − + − · · ·    .   + + − · · ·  . . . ... . . . . . . • Moreover | A α | = | A − α | . • Consider a “sign” matrix S = diag(1 , − 1 , 1 , . . . ), S = S T = S − 1 , then A α = SA − α S, i.e., sp( A α ) = sp( A − α ) .

  11. Modified Gram matrix α 2 2 factor. Note that each entry contains e Let G α = e − α 2 2 A α ∈ R ( N +1) × ( N +1) , min( m,k ) 1 � m �� k � � α m + k − 2 ℓ ℓ ! , ( G α ) m +1 ,k +1 = √ √ m, k = 0 , 1 , . . . , N. ℓ ℓ m ! k ! ℓ =0 Observation: Denote χ N +1 ( λ ) = det( λI N +1 − G α ), for N = 0 , 1 , 2 , 3 we have χ 1 ( λ ) = λ − 1 , χ 2 ( λ ) = λ 2 − ( α 2 + 2) λ +1 , 2 + 3 α 2 + 3) λ 2 +( α 4 2 + 3 α 2 + 3) λ − 1 , χ 3 ( λ ) = λ 3 − ( α 4 6 + 2 α 4 + 6 α 2 + 4) λ 3 +( α 8 3 + 7 α 4 + 12 α 2 + 6) λ 2 χ 4 ( λ ) = λ 4 − ( α 6 12 + 4 α 6 6 + 2 α 4 + 6 α 2 + 4) λ +1 . − ( α 6 � � � � odd anti-palindromic The degree characteristic polynomial has coeff’s. even palindromic

  12. Palindromic—anti-palindromic intermezzo Polynomial of degree n n � � � palindromic (PP) ⇐ ⇒ ϕ j = ϕ n − j ϕ j x j is f ( x ) = j = 0 , 1 , . . . , n. anti-palindromic (AP) ⇐ ⇒ ϕ j = − ϕ n − j j =0 Since n n � 1 � 1 ϕ j ± ϕ n − j � � x n f ( x ) = x n − j = = ± f , x n − j x j =0 j =0 it has reciprocal roots, i.e., � 1 � f ( x ) = 0 = 0 . ⇐ ⇒ f x A lot of interesting properties, e.g.: • AP has always root 1 (AP factor ( x − 1)), · PP AP • odd-degree PP has always root − 1 (P factor ( x + 1)), PP PP AP • PP-AP multiplication − → AP AP PP

  13. Spectra of modified Gram matrices Observation: 5 6 10 10 4 10 2 10 0 0 10 10 −2 10 −4 10 −5 −6 10 10 −5 0 5 −5 0 5 α α

  14. Decomposition of the modified Gram matrix Recall the “sign” matrix S = S T = S − 1 . S = diag(1 , − 1 , 1 , . . . , ( − 1) N ) ∈ R ( N +1) × ( N +1) , Consider an upper triangular matrix   � 0 � � 1 � � 2 � � 3 � α 0 α 1 α 2 α 3   · · · α 2 α 3 1 α · · · 0 0 0 0 � 1 � � 2 � � 3 �  α 0 α 1 α 2  3 α 2 0 · · · 0 1 2 α · · ·     1 1 1 � 2 � � 3 �  ∈ R ( N +1) × ( N +1) .     α 0 α 1 U α = = 0 0 1 3 α · · · 0 0 · · ·     2 2 � 3 � 0 0 0 1    · · · α 0 0 0 0 · · ·   . . . 3 ... ... . . . . . . ... ... . . . . . . . . . Then U − 1 U α = SU − α S, U α U − α = I, so = U − α = SU α S. α Finally consider also a “factorial” matrix F = diag(0! , 1! , 2! , . . . , N !) ∈ R ( N +1) × ( N +1) , F = F T , then ...

  15. The modified Gram matrix G α = e − α 2 2 A α ∈ R ( N +1) × ( N +1) with entries min( m,k ) � m �� k � 1 � α m + k − 2 ℓ ℓ ! , ( G α ) m +1 ,k +1 = √ √ m, k = 0 , 1 , . . . , N, ℓ ℓ m ! k ! ℓ =0 can be then factorized as � � T � � G α = F − 1 α FU α F − 1 1 2 U α F − 1 1 2 U α F − 1 2 U T 2 = F F . 2 2 � �� � Cholesky factorization Its inverse can be factorized as 1 1 G − 1 2 U − 1 α F − 1 U − T = F α F 2 α � � � � � � � �� � T 1 1 1 1 2 U α F − 1 1 1 2 U α F − 1 SF − 1 S U T 2 U α F − 1 U T = = SF 2 S = S F 2 S U α SF α F F F S, 2 2 2 α i.e., � �� � T � � T � � 2 U α F − 1 1 1 2 U α F − 1 2 U α F − 1 1 1 2 U α F − 1 G − 1 ∼ F F ∼ F F = G α . 2 2 2 2 α Consequently sp( G α ) = sp( G − 1 α ) .

  16. Perron–Frobenius theory Entries of G α are positive and increasing for α ∈ (0 , ∞ ), i.e., ∀ ǫ > 0 , G α + ǫ > G α > 0 . Perron–Frobenius theory then gives λ max ( G α + ǫ ) > λ max ( G α ) . Since sp( G α ) = sp( G − 1 α ), then κ ( G α ) = λ max ( G α ) λ min ( G α ) = ( λ max ( G α )) − 1 λ min ( G α ) = λ max ( G α ) 2 , and and thus λ min ( G α + ǫ ) < λ min ( G α ) and κ ( G α + ǫ ) > κ ( G α ) . Since sp( G α ) = sp( G − α ), then analogous results can be obtained for α ∈ ( −∞ , 0).

  17. Back to the original Gram matrix α 2 α 2 2 sp( G α ). Thus 2 G α is a scalar mutliple of G α , i.e., sp( A α ) = e Recall that A α = e λ max ( A α ) and κ ( A α ) are still increasing for α ∈ (0 , ∞ ). 10 12 10 10 10 10 8 10 8 10 6 10 6 10 4 10 4 10 2 10 2 10 0 10 0 10 −2 −2 10 10 −5 0 5 −5 0 5 α α

  18. III. Optimal Diagonal Scaling

  19. Optimal diagonal scaling Let B = ( b i,j ) ∈ R n × n be symmetric positive definite, and � � 1 1 D ∗ ≡ diag , . . . , . � � b 1 , 1 b n,n Then κ ( D ∗ BD ∗ ) ≤ n D diagonal κ ( DBD ) . min See [A van der Sluis, 1969] or [N Higham, 2002]. Note that b i,j ( D ∗ BD ∗ ) i,j = , ( D ∗ BD ∗ ) i,i = 1 . � � b i,i b j,j

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend