towards the s matrix of massless qfts on the riemann
play

Towards the S-matrix of massless QFTs on the Riemann sphere Piotr - PowerPoint PPT Presentation

Towards the S-matrix of massless QFTs on the Riemann sphere Piotr Tourkine, University of Cambridge IGST 2017, ENS Paris In collaboration with Eduardo Casali, Yannick Herfray, - Yvonne Geyer, Lionel Mason, Ricardo Monteiro. - 1 Outline


  1. Towards the S-matrix of massless QFTs on the Riemann sphere Piotr Tourkine, University of Cambridge IGST 2017, ENS Paris In collaboration with Eduardo Casali, Yannick Herfray, - Yvonne Geyer, Lionel Mason, Ricardo Monteiro. - 1

  2. Outline • Motivations • Review: CHY formulae & Twistor strings • Loops • Null strings 2

  3. Scattering equations formalism [arXiv:1307.2199] Scattering of Massless Particles in Arbitrary Dimensions F. Cachazo, S. He, E. Y. Yuan [arXiv:1311.2564] Ambitwistor strings and the scattering equations L. Mason, D. Skinner 3

  4. Scattering equations formalism [arXiv:1307.2199] Scattering of Massless Particles in Arbitrary Dimensions F. Cachazo, S. He, E. Y. Yuan [arXiv:1311.2564] Ambitwistor strings and the scattering equations L. Mason, D. Skinner Witten; Roiban Spradlin Volovich 4

  5. « » Quote from David Skinner, at Amplitudes 2015 (Zürich) 5

  6. The scattering equations Fairlie, Roberts ‘72, Gross Mende, ‘87 and n null momenta k i ∈ R d , k 2 P : CP 1 → C d Let i = 0 n k i � � z , z i ∈ CP 1 P ( z ) = k i = 0 dz z − z i i = 1 Scattering equations: z 2 z 1 k i · k j � Res P 2 � … = 0 z i = � z i − z j i , j z n 6

  7. The scattering equations Fairlie, Roberts ‘72, Gross Mende, ‘87 k i · k j � Res P 2 � = 0 z i = � z i − z j i , j 7

  8. The scattering equations k i · k j � Res P 2 � = 0 z i = � z i − z j i , j • Solve for z i in terms of k i . k j • SL(2,C) invariance • (n-3)! solutions Arise in large α ’ limit of string theory Gross, Mende ‘87 8

  9. Cachazo-He-Yuan formulae (2013) n � � dz i ¯ � � sc. eqns. F ( k i , � j , z i ) � tree-level amplitude = i = 1 scattering data: 
 ⟶ F = I L × I R kinematics, polarisations, 
 colour structure, … I kin I kin ∼ gravity I colour I kin ∼ gauge theory I L / R ∈ { I kin , I colour } = ⇒ I colour I colour ∼ scalar

  10. Cachazo-He-Yuan formulae (2013) n � � dz i ¯ � � sc. eqns. F ( k i , � j , z i ) � tree-level amplitude = i = 1 I kin I kin ∼ gravity I colour I kin ∼ gauge theory I L / R ∈ { I kin , I colour } = ⇒ I colour I colour ∼ scalar just for completeness : I kin = Pf � ( M ) Tr ( T a 1 . . . T a n ) I colour = ( z 1 − z 2 ) . . . ( z n − z 1 ) + permutations

  11. Cachazo-He-Yuan formulae (2013) n � � dz i ¯ � � sc. eqns. F ( k i , � j , z i ) � tree-level amplitude = i = 1 � F � = n-point field theory amplitude � Jac solutions

  12. The scattering equations • Global residue theorem Dolan, Goddard 2014 • Many works on avoiding having to solve Baadsgaard, Bjerrum-Bohr, Bourjaily, Damgaard, Feng K 2 → 0 K = k 1 + · · · + k k , z 2 z 1 z k+1 z 2 z 1 … ⟶ … … 1 z k z n 12 K 2 z n

  13. Review, continued Cachazo He Yuan 2015 13

  14. Ambitwistor strings x' x Mason, Skinner 2013 • A chiral string in ambitwistor space ∂ X − e � P · ¯ 2 P 2 S A = X' Σ X

  15. Ambitwistor strings x' x Mason, Skinner 2013 • A chiral string in ambitwistor space ∂ X − e � P · ¯ 2 P 2 S A = X' Σ X Ambitwistor space = space of compexified null geodesics X' x' x X space-time

  16. Mason, Skinner 2013 Ambitwistor strings x' x • A chiral string in ambitwistor space ∂ X − e � P · ¯ 2 P 2 S A = X' Σ X • Spectrum: type II supergravity α � = 0 of string theory.

  17. Mason, Skinner 2013 Ambitwistor strings x' x • A chiral string in ambitwistor space ∂ X − e � P · ¯ 2 P 2 S A = X' Σ NO STRINGY MODES X • Spectrum: type II supergravity α � = 0 of string theory.

  18. Mason, Skinner 2013 Ambitwistor strings x' x • A chiral string in ambitwistor space ∂ X − e � P · ¯ 2 P 2 S A = X' Σ NO STRINGY MODES X • Spectrum: type II supergravity α � = 0 of string theory. • Can be extended to loops + + ... Adamo, Casali, Skinner ’14, Ohmori ‘15 18

  19. Review, continued • Deep link to colour kinematics • Extended to curved space Adamo, Casali, Skinner ‘14 • Computation of form factors He, Liu ’16; Brandhuber, Hughes, Panerai, Spence, Travaglini ’16; Bork Onishchenko ‘17 • ℐ models; explain the BMS origin of soft theorems Adamo, Casali, Skinner ’14; Geyer Lipstein Mason ‘14 • Ambitwistor models for a zoo of theories Casali, Geyer, Mason, Monteiro, Roehrig 19

  20. Ambitwistor strings : loops ! • New zero modes for P (= loop momenta) • New scattering equations fixing the moduli of the surface in terms of the loop momenta • Total number of eqns : 3g-3+n 20

  21. One-loop scattering equations Adamo, Casali, Skinner 2014 q = exp ( 2i πτ ) � � � 1 ( z ij , � ) = 0 , i = 2 , . . . , n − 1 � · k i + k i · k j � 1 j � = i n n � 2 + 2 θ � θ � θ 1 ( z 0i , � ) θ � � � θ 1 ( z 0i , � ) + θ 1 ( z 0j , � ) = 0 � · k i k i · k j 1 1 1 i = 1 i � = j Integrands are easy to write, string theory-like computation 21

  22. One-loop scattering equations Adamo, Casali, Skinner 2014 • Difficulty: hard to solve. • number of solutions ? • modular invariance ? after all this is just field theory. • Only solution in special regime Casali, Tourkine 2015 22

  23. Outline • Motivations. • Review: CHY formulae & Twistor strings Geyer Mason Monteiro Tourkine • Loops reloaded PRL 2015, JHEP 2016, PRD 2016 • Null strings 23

  24. From loops to trees q = exp ( 2i πτ ) 24

  25. From loops to trees 1-loop Ambitwistor string amplitudes have one additional scattering equation d τδ ( P 2 ) 25

  26. From loops to trees q = exp ( 2i πτ ) 26

  27. From loops to trees ∂ 1 q = exp ( 2i πτ ) ¯ δ ( f ( z )) := ¯ f ( z ) � 1 � dq � � = − 1 = ... = − 1 d τδ ( P 2 ) → ¯ � � � P 2 P 2 � 2 q � q = 0 Integration by parts: sets q=0 27

  28. From loops to trees q = exp ( 2i πτ ) 28

  29. From loops to trees + � 1 = � 2 × − � Integration by parts loop momentum � d D � 1 tree-level amplitude 1-loop amplitude = � 2 × with two more points 29

  30. From loops to trees • (n-1)!-2(n-2)! solutions • n-point one-loop amplitudes in (super)Yang-Mills, (super)gravity • Maps to ‘Q-cut’ representation Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng 30

  31. Two loops Geyer Monteiro Mason Tourkine, PRD 2016 1 “ “ = 1 � 2 2 � 2 1 � 1 � 2 Prescription for max SUSY, 
 gravity and gauge theories, 
 at four points 31

  32. the dream New formulation of the perturbative expansion based on this procedure to all loops +… + + + 1. whole new formalism 2. compact formulae 3. long term perspectives; resummation ? 32

  33. the dream vs reality • Beyond 2 loops there are new unexpected issues • These models are really too unusual after all • So we looked for a string theory origin Siegel ‘15 33

  34. Outline • Motivations. • Review: CHY formulae & Twistor strings • Loops Casali, Tourkine, JHEP 2016 • Null strings Casali, Herfray, Tourkine work in progress Bandos, 1404.1299 Bagchi, Chakrabortty, Parekh 1507.04361 34

  35. A clue: the scattering equations • Also appear in the high energy limit of string theory ! 35

  36. Paradox T = ( 2 πα � ) � 1 M 2 ~ T J M 2 J 36

  37. Paradox T = ( 2 πα � ) � 1 tension to zero M 2 ~ T J M 2 Theory of higher spins J 37

  38. Paradox T = ( 2 πα � ) � 1 tension to zero M 2 ~ T J M 2 Theory of higher spins vs Ambitwistor strings = 
 just normal QFTs J 38

  39. LST action Lindstrom Sundborg Theodoris ’91 Nambu-Goto 39

  40. LST action ↳ Hamiltonian action H = λ ( P 2 + T 2 X � 2 ) + µ P · X � Virasoro constraints 40

  41. LST action 41

  42. LST action Casali, Tourkine, 2016 Gauge λ =0 and special quantization reduces to ambitwistor string ∂ X − e � P · ¯ 2 P 2 S A = Σ � V α ∂ α X · V β ∂ β X Integrate P out: S LST = 42

  43. LST action � V α ∂ α X · V β ∂ β X S LST = Lindstrom Sundborg Theodoris ’91 Bagchi, Chakrabortty, Parekh 1507.04361 equations of motion : 43

  44. LST action � V α ∂ α X · V β ∂ β X S LST = equations of motion : D h αβ Open question : for Polyakov’s strings, gives integration over the moduli space. What does give here ? D V α 44

  45. Classical and quantum Null = tensionless tension to zero ???

  46. 1+1+1+1+1+… = -1/2 In string theory, this Casimir effect 
 gives the tachyon.

  47. 1+1+1+1+1+… = -1/2 In string theory, this Casimir effect 
 gives the tachyon.

  48. Classical and quantum ^ L 0 = + 2 � + + Quantum effect in the angular momentum suppresses wild fluctuations 48

  49. Classical and quantum • Constraints : P 2 and P.X’ • Constraints form a GCA 2 (=BMS 3 ) algebra Bagchi, Gopakumar, Mandal, Miwa 0912.1090  [ L n , L m ] = ( n − m ) L n + m + d 6 m ( m 2 − 1 ) δ m + n , d = η µ  µ  [ L n , M m ] = ( n − m ) M n + m ,  [ M n , M m ] = 0 ,  49

  50. Classical and quantum � � L 0 = nx n p − n → L 0 = n : x n p − n : L 0 → L 0 − 2  L m | phys � = 0 , m > 0   ( L 0 � 2 ) | phys � = 0 ,  M m | phys � = 0 , m � 0  50

  51. A mysterious quantization ambiguity J. Gamboa, C. Ramirez, M. Ruiz-Altaba, 1989 “Weyl ordering” Normal ordering

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend