towards the gauge beta function
play

Towards the gauge beta function at O (1 / N 2 f ) and O (1 / N 3 f ) - PowerPoint PPT Presentation

Towards the gauge beta function at O (1 / N 2 f ) and O (1 / N 3 f ) Manuel Reichert Bridging perturbative and non-perturbative physics, Primosten, 07. October 2019 CP 3 -Origins, SDU Odense, Denmark Nicola Dondi, Gerald Dunne, MR, Francesco


  1. Towards the gauge beta function at O (1 / N 2 f ) and O (1 / N 3 f ) Manuel Reichert Bridging perturbative and non-perturbative physics, Primosten, 07. October 2019 CP 3 -Origins, SDU Odense, Denmark Nicola Dondi, Gerald Dunne, MR, Francesco Saninno: arXiv:1903.02568 Nicola Dondi, MR, Francesco Saninno: in preparation

  2. Which matter systems are asymptotically safe in d = 4 ? • Gauge-Yukawa theories at large N f & N c (perturbatively) [Litim, Sannino ’14] • How far does this extend to small N c ? • Test gauge theories at large N f non-perturbatively Standard QCD picture: 70 60 • Small N f : asymptotic freedom & Safe QCD 50 confinement in the IR 40 N f 30 • Medium N f : asymptotic freedom IR conformal 20 & IR Banks-Zaks fixed point 10 0 2 3 4 5 6 7 • Large N f : asymptotic freedom lost N c → asymptotic safety? [Antipin, Sannino ’17] 1

  3. Beta functions of (S)QED and (S)QCD β ( K ) = β (0) ( K ) + β (1) ( K ) + . . . N f QED 10 QCD SQED SQCD β (1) 5 0 0 1 2 3 4 5 6 7 8 K UV fixed point for QED & QCD Landau pole for SQED & SQCD 2

  4. How physical are these fixed points? • The fermion mass anomalous dimension goes to zero in QCD and to infinity in QED [Antipin, Sannino ’17] • Hints for FP in QCD at medium N f from resummations with Meijer G-functions [Antipin, Maiezza, Vasquez ’18] • Lattice studies inconclusive so far [Leino, Rindlisbacher, Rummukainen, Sannino, Tuominen ’19] • Poles might be resummable within the 1 / N f series [Alanne, Blasi, Dondi ’19] 3

  5. How to go beyond 1 / N f • The next orders in the 1 / N f expansion would test the physical nature of the FP • No known resummation formula for two bubble-chains, needed for 1 / N 2 f and higher orders • Can we extract the location of the pole, the residuum, etc., with a finite amount of coefficients? 4

  6. How to go beyond 1 / N f • The next orders in the 1 / N f expansion would test the physical nature of the FP • No known resummation formula for two bubble-chains, needed for 1 / N 2 f and higher orders • Can we extract the location of the pole, the residuum, etc., with a finite amount of coefficients? Two methods: • Large-order behaviour of expansion coefficients • Pad´ e approximants 4

  7. Large-order behaviour: Darboux’s Theorem The nearby singularity determines the large-order growth of the expansion coefficients a n . E.g. for expansion around z = 0 • pole of order p at z 0 ( f ( z ) ∼ φ ( z )(1 − z / z 0 ) p + finite) � � a n ∼ 1 n + p − 1 φ ( z 0 ) + . . . z n n 0 • logarithmic branch cut at z 0 ( f ( z ) ∼ φ ( z ) ln(1 − z / z 0 ) + finite) a n ∼ 1 1 n φ ( z 0 ) + . . . z n 0 5

  8. Large-order behaviour: Darboux’s Theorem The nearby singularity determines the large-order growth of the expansion coefficients a n . E.g. for expansion around z = 0 • pole of order p at z 0 ( f ( z ) ∼ φ ( z )(1 − z / z 0 ) p + finite) � � a n ∼ 1 n + p − 1 φ ( z 0 ) + . . . z n n 0 • logarithmic branch cut at z 0 ( f ( z ) ∼ φ ( z ) ln(1 − z / z 0 ) + finite) a n ∼ 1 1 n φ ( z 0 ) + . . . z n 0 Expectation for QED F QED = � n f n x n � 2 � 2 � 2 � n � n � n � � f n ∼ R 0 + R 1 + R 2 + . . . 15 21 27 5

  9. Large-order behaviour of F QED 0 . 4 0 . 2 0 f n +1 − 0 . 2 f n 2 15 − 0 . 4 0 10 20 30 40 50 60 n Ratio test f n +1 reveals location of the first pole f n 6

  10. Large-order behaviour of F QED 4 , 000 � 15 � n +1 f n 2 2 , 000 28 − 45 π 2 0 − 2 , 000 − 4 , 000 0 10 20 30 40 50 60 n 7

  11. Large-order behaviour of F QED 1 . 5 � 15 � n +1 f n 2 1 28 − 45 π 2 0 . 5 0 − 0 . 5 25 30 35 40 45 50 55 60 n With the knowledge of the pole the residuum is computable 7

  12. Large-order behaviour of F QED 0 . 4 0 . 2 0 ˜ f n +1 − 0 . 2 ˜ f n 2 21 − 0 . 4 0 10 20 30 40 50 60 n Subtracting the first pole reveals the second pole � − n − 1 28 � 15 ˜ f n = f n + 45 π 2 2 8

  13. Large-order behaviour of F QED 0 log 10 | ( n + 1) c (1) n | log 10 | ( n + 1) c (1) n | large-order approximation − 20 − 40 0 10 20 30 40 50 60 n After ∼ 30 terms the large-order behaviour sets in (for subleading behaviour later) 9

  14. How many coefficients are needed? 50 40 coefficients 30 20 QED QCD 10 SQED SQCD 0 1 2 3 4 n pole ”Closer” to the origin → less coefficients are needed 10

  15. Pad´ e methods Analytic continuation of truncated Taylor series by ration of two polynomials M P [ R , S ] ( x ) = P R ( x ) � f n x n F QED ( x ) ≈ − → Q S ( x ) n =0 with R + S = M . 11

  16. Pad´ e methods Analytic continuation of truncated Taylor series by ration of two polynomials M P [ R , S ] ( x ) = P R ( x ) � f n x n F QED ( x ) ≈ − → Q S ( x ) n =0 with R + S = M . Rewriting of resummed F QED ( x ) sin 2 � π x F QED ( x ) ∼ Γ(1 + x � 3 ) 3 � π x Γ( 1 2 + x � 3 ) cos 3 Pad´ e approximant with 2 R ≈ S should lead to best results. 11

  17. Pad´ e approximants of F QED F QED 1 0 . 5 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  18. Pad´ e approximants of F QED F QED 1 M = 20 0 . 5 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  19. Pad´ e approximants of F QED F QED 1 M = 20 M = 30 0 . 5 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  20. Pad´ e approximants of F QED F QED 1 M = 20 M = 30 M = 40 0 . 5 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  21. Pad´ e approximants of F QED F QED 1 M = 20 M = 30 M = 40 0 . 5 M = 50 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  22. Pad´ e approximants of F QED F QED 1 M = 20 M = 30 M = 40 0 . 5 M = 50 M = 60 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x 12

  23. Pad´ e approximants of F QED F QED 1 M = 20 M = 30 M = 40 0 . 5 M = 50 M = 60 0 − 0 . 5 0 2 4 6 8 10 12 14 16 18 20 x • Need ∼ 30 coefficients to resolve first singularity (similar to large-order growth analysis) • Can resolve function beyond the first singularity 12

  24. QED beta function 1 / N f : 13

  25. QED beta function 1 / N f : 1 / N 2 f (subset): 13

  26. QED beta function 1 / N f : 1 / N 2 f (subset): Master integral known / not know 13

  27. Beyond 1 / N f : nested diagrams Nested sub-part of beta function: gauge & RG scale independent 1 /N f Computation up to K 44 14

  28. Beyond 1 / N f : nested diagrams Nested sub-part of beta function: gauge & RG scale independent 1 /N f Computation up to K 44 At O (1 / N 3 f ) Computation up to K 32 14

  29. Ratio test at O (1 / N 2 f ) β (2) � b n K n nested = n 1 0 . 5 0 b n +1 b n − 0 . 5 0 5 10 15 20 25 30 35 40 n New finite radius of convergence 15

  30. Ratio test at O (1 / N 2 f ) β (2) � b n K n nested = n 0 . 34 0 . 33 0 . 32 0 . 31 b n +1 b n 0 . 3 28 30 32 34 36 38 40 42 n New finite radius of convergence but extreme slow convergence 15

  31. Richardson extrapolation Enhance the convergence of the series a n = s + A n + B n 2 + C n 3 + . . . 16

  32. Richardson extrapolation Enhance the convergence of the series a n = s + A n + B n 2 + C n 3 + . . . First Richardson ( B = C = . . . = 0) R (1) a n ≡ s = ( n + 1) a n +1 − na n 16

  33. Richardson extrapolation Enhance the convergence of the series a n = s + A n + B n 2 + C n 3 + . . . First Richardson ( B = C = . . . = 0) R (1) a n ≡ s = ( n + 1) a n +1 − na n Second Richardson ( C = . . . = 0) R (2) a n ≡ s = 1 � ( n + 2) 2 a n +2 − 2( n + 1) 2 a n +1 + n 2 a n � 2 16

  34. Richardson extrapolation Enhance the convergence of the series a n = s + A n + B n 2 + C n 3 + . . . First Richardson ( B = C = . . . = 0) R (1) a n ≡ s = ( n + 1) a n +1 − na n Second Richardson ( C = . . . = 0) R (2) a n ≡ s = 1 � ( n + 2) 2 a n +2 − 2( n + 1) 2 a n +1 + n 2 a n � 2 For oscillating series: Shanks transformation 16

  35. Ratio test at O (1 / N 2 f ) 0 . 34 0 . 33 0 . 32 0 . 31 b n +1 b n 0 . 3 28 30 32 34 36 38 40 42 n Bare series: K ∗ = 3 . 14 17

  36. Ratio test at O (1 / N 2 f ) 0 . 34 0 . 33 0 . 32 b n +1 0 . 31 b n R (1) b n +1 b n 1 3 0 . 3 28 30 32 34 36 38 40 42 n Bare series: K ∗ = 3 . 14 First Richardson: K ∗ = 3 . 003 17

  37. Ratio test at O (1 / N 2 f ) 0 . 34 0 . 33 0 . 32 b n +1 b n R (1) b n +1 0 . 31 b n R (2) b n +1 b n 1 3 0 . 3 28 30 32 34 36 38 40 42 n Bare series: K ∗ = 3 . 14 First Richardson: K ∗ = 3 . 003 Second Richardson: K ∗ = 3 . 00008 17

  38. Residue at O (1 / N 2 f ) − 0 . 49 − 0 . 5 − 0 . 51 3 n n 2 b n − 0 . 52 R (2) [3 n n 2 b n ] − 1 2 − 0 . 53 30 32 34 36 38 40 42 44 n Bare series: 3 n n 2 b n = − 0 . 512 Second Richardson: 3 n n 2 b n = − 0 . 500007 18

  39. Subleading behaviour b n = b n + 1 1 1 ˜ 2 3 n n 2 19

  40. Subleading behaviour b n = b n + 1 1 1 ˜ 2 3 n n 2 0 . 34 0 . 32 0 . 3 b n +1 b n R (2) b n +1 b n 1 3 0 . 28 32 34 36 38 40 42 n Bare series: K ∗ = 3 . 215 Second Richardson: K ∗ = 3 . 0003 19

  41. Subleading behaviour b n = b n + 1 1 1 ˜ 3 n n 2 2 − 0 . 49 3 n n 3 ˜ b n R (2) [3 n n 3 ˜ b n ] − 1 2 − 0 . 5 − 0 . 51 − 0 . 52 32 34 36 38 40 42 44 n Bare series: 3 n n 3 ˜ b n = − 0 . 512 Second Richardson: 3 n n 3 ˜ b n = − 0 . 500007 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend