rational general solutions of first order non autonomous
play

Rational general solutions of first order non-autonomous parametric - PowerPoint PPT Presentation

Rational general solutions of first order non-autonomous parametric ODEs Ng o L am Xu an Ch au Research Institute for Symbolic Computation (RISC) MEGA 2009 Ng o L am Xu an Ch au Rational general solutions of first order


  1. Rational general solutions of first order non-autonomous parametric ODEs Ngˆ o Lˆ am Xuˆ an Chˆ au Research Institute for Symbolic Computation (RISC) MEGA 2009 Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 1 / 20

  2. Outline Introduction 1 Construction of solutions 2 Differential algebra setting and Proof 3 Algorithm and Example 4 Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 2 / 20

  3. Introduction Feng and Gao have studied the rational general solutions of an autonomous ODE F ( y , y ′ ) = 0 , where F ∈ Q [ y , z ]. Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 3 / 20

  4. Introduction Feng and Gao have studied the rational general solutions of an autonomous ODE F ( y , y ′ ) = 0 , where F ∈ Q [ y , z ]. Formally view F ( y , y ′ ) = 0 as an algebraic curve F ( y , z ) = 0. Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 3 / 20

  5. Introduction Feng and Gao have studied the rational general solutions of an autonomous ODE F ( y , y ′ ) = 0 , where F ∈ Q [ y , z ]. Formally view F ( y , y ′ ) = 0 as an algebraic curve F ( y , z ) = 0. If y = f ( x ) is a nontrivial rational function, then F ( f ( x ) , f ( x ) ′ ) = 0 ⇒ ( f ( x ) , f ′ ( x )) is a proper rational parametrization of F ( y , z ) = 0 . Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 3 / 20

  6. Introduction Feng and Gao have studied the rational general solutions of an autonomous ODE F ( y , y ′ ) = 0 , where F ∈ Q [ y , z ]. Formally view F ( y , y ′ ) = 0 as an algebraic curve F ( y , z ) = 0. If y = f ( x ) is a nontrivial rational function, then F ( f ( x ) , f ( x ) ′ ) = 0 ⇒ ( f ( x ) , f ′ ( x )) is a proper rational parametrization of F ( y , z ) = 0 . If ( r ( x ) , s ( x )) is a proper rational parametrization of F ( y , z ) = 0, then under certain “differential compatibility conditions” one obtains a rational general solution of F ( y , y ′ ) = 0 from r ( x ). Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 3 / 20

  7. We would like to study the rational general solutions of an non-autonomous ODE F ( x , y , y ′ ) = 0 , where F ∈ Q [ x , y , z ] . Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 4 / 20

  8. We would like to study the rational general solutions of an non-autonomous ODE F ( x , y , y ′ ) = 0 , where F ∈ Q [ x , y , z ] . Formally view F ( x , y , y ′ ) = 0 as an implicit algebraic surface F ( x , y , z ) = 0. Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 4 / 20

  9. We would like to study the rational general solutions of an non-autonomous ODE F ( x , y , y ′ ) = 0 , where F ∈ Q [ x , y , z ] . Formally view F ( x , y , y ′ ) = 0 as an implicit algebraic surface F ( x , y , z ) = 0. A rational solution y = f ( x ) defines a rational space curve γ ( x ) = ( x , f ( x ) , f ′ ( x )) on the surface F ( x , y , z ) = 0 . Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 4 / 20

  10. We would like to study the rational general solutions of an non-autonomous ODE F ( x , y , y ′ ) = 0 , where F ∈ Q [ x , y , z ] . Formally view F ( x , y , y ′ ) = 0 as an implicit algebraic surface F ( x , y , z ) = 0. A rational solution y = f ( x ) defines a rational space curve γ ( x ) = ( x , f ( x ) , f ′ ( x )) on the surface F ( x , y , z ) = 0 . Assume in addition that the surface F ( x , y , z ) = 0 is parametrized by a proper rational parametrization P ( s , t ). We will find the “differential compatibility conditions” on the coordinate functions of P ( s , t ). Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 4 / 20

  11. Construction of solutions Let P ( s , t ) = ( χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t )) be a proper parametrization of F ( x , y , z ) = 0, where χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t ) ∈ Q ( s , t ) . Suppose that the inverse of P ( s , t ) is P − 1 ( x , y , z ) = ( s ( x , y , z ) , t ( x , y , z )) . Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 5 / 20

  12. Construction of solutions Let P ( s , t ) = ( χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t )) be a proper parametrization of F ( x , y , z ) = 0, where χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t ) ∈ Q ( s , t ) . Suppose that the inverse of P ( s , t ) is P − 1 ( x , y , z ) = ( s ( x , y , z ) , t ( x , y , z )) . In particular, if y = f ( x ) is a rational solution of F ( x , y , y ′ ) = 0, then we obtain P − 1 ( x , f ( x ) , f ′ ( x )) = ( s ( x ) , t ( x )) , Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 5 / 20

  13. Construction of solutions Let P ( s , t ) = ( χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t )) be a proper parametrization of F ( x , y , z ) = 0, where χ 1 ( s , t ) , χ 2 ( s , t ) , χ 3 ( s , t ) ∈ Q ( s , t ) . Suppose that the inverse of P ( s , t ) is P − 1 ( x , y , z ) = ( s ( x , y , z ) , t ( x , y , z )) . In particular, if y = f ( x ) is a rational solution of F ( x , y , y ′ ) = 0, then we obtain P − 1 ( x , f ( x ) , f ′ ( x )) = ( s ( x ) , t ( x )) , which defines a rational plane curve and satisfies the relation  χ 1 ( s ( x ) , t ( x )) = x   χ 2 ( s ( x ) , t ( x )) = f ( x )  χ 3 ( s ( x ) , t ( x )) = f ′ ( x ) .  Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 5 / 20

  14. � χ 1 ( s ( x ) , t ( x )) = x (1) [ χ 2 ( s ( x ) , t ( x ))] ′ = χ 3 ( s ( x ) , t ( x )) Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 6 / 20

  15. � χ 1 ( s ( x ) , t ( x )) = x (1) [ χ 2 ( s ( x ) , t ( x ))] ′ = χ 3 ( s ( x ) , t ( x )) ⇓ ∂χ 1 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 1 ( s ( x ) , t ( x ))  t ′ ( x ) = 1   ∂ s ∂ t   (2) ∂χ 2 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 2 ( s ( x ) , t ( x ))   t ′ ( x ) = χ 3 ( s ( x ) , t ( x ))   ∂ s ∂ t Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 6 / 20

  16. � χ 1 ( s ( x ) , t ( x )) = x + c (1) [ χ 2 ( s ( x ) , t ( x ))] ′ = χ 3 ( s ( x ) , t ( x )) ⇓ ∂χ 1 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 1 ( s ( x ) , t ( x ))  t ′ ( x ) = 1   ∂ s ∂ t   (2) ∂χ 2 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 2 ( s ( x ) , t ( x ))   t ′ ( x ) = χ 3 ( s ( x ) , t ( x ))   ∂ s ∂ t Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 6 / 20

  17. � χ 1 ( s ( x ) , t ( x )) = x + c (1) [ χ 2 ( s ( x ) , t ( x ))] ′ = χ 3 ( s ( x ) , t ( x )) ⇓ ∂χ 1 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 1 ( s ( x ) , t ( x ))  t ′ ( x ) = 1   ∂ s ∂ t   (2) ∂χ 2 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 2 ( s ( x ) , t ( x ))   t ′ ( x ) = χ 3 ( s ( x ) , t ( x ))   ∂ s ∂ t ⇓ ∃ c constant � χ 1 ( s ( x − c ) , t ( x − c )) = x (3) [ χ 2 ( s ( x − c ) , t ( x − c ))] ′ = χ 3 ( s ( x − c ) , t ( x − c )) Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 6 / 20

  18. � χ 1 ( s ( x ) , t ( x )) = x + c (1) [ χ 2 ( s ( x ) , t ( x ))] ′ = χ 3 ( s ( x ) , t ( x )) ⇓ ∂χ 1 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 1 ( s ( x ) , t ( x ))  t ′ ( x ) = 1   ∂ s ∂ t   (2) ∂χ 2 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 2 ( s ( x ) , t ( x ))   t ′ ( x ) = χ 3 ( s ( x ) , t ( x ))   ∂ s ∂ t ⇓ ∃ c constant � χ 1 ( s ( x − c ) , t ( x − c )) = x (3) [ χ 2 ( s ( x − c ) , t ( x − c ))] ′ = χ 3 ( s ( x − c ) , t ( x − c )) y = χ 2 ( s ( x − c ) , t ( x − c )) is a rational solution of F ( x , y , y ′ ) = 0 . Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 6 / 20

  19. Consider the linear system (2) ∂χ 1 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 1 ( s ( x ) , t ( x ))  t ′ ( x ) = 1   ∂ s ∂ t   ∂χ 2 ( s ( x ) , t ( x )) s ′ ( x ) + ∂χ 2 ( s ( x ) , t ( x ))   t ′ ( x ) = χ 3 ( s ( x ) , t ( x )) .   ∂ s ∂ t Ngˆ o Lˆ am Xuˆ an Chˆ au Rational general solutions of first order non-autonomous parametric ODEs 7 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend