towards an equivalence theorem for computer simulation
play

Towards an Equivalence Theorem for Computer Simulation Experiments? - PowerPoint PPT Presentation

Towards an Equivalence Theorem for Computer Simulation Experiments? Werner G. Mller Department of Applied Statistics (IFAS) Based on joint work with M.Stehlk and Luc Pronzato (started a week ago) 2.7.2009 ENBIS EMSE 2009 - St.Etienne 1 I


  1. Towards an Equivalence Theorem for Computer Simulation Experiments? Werner G. Müller Department of Applied Statistics (IFAS) Based on joint work with M.Stehlík and Luc Pronzato (started a week ago) 2.7.2009 ENBIS EMSE 2009 - St.Etienne 1

  2. I take on challenge #1 from David’s list: „create designs that are tied to our methods of analysis“ D. Steinberg (2009), ENBIS-EMSE workshop 2.7.2009 ENBIS EMSE 2009 - St.Etienne 2

  3. The Setup ( ) ( ) ( ) = η β + ε y z ( ) x z , z Random field: [ ] ε ε = θ = θ E ( ) ( ') z z c z z ( , '; ) c d ( , ). with Two purposes: prediction or estimation Universal Kriging : using the EBLUP and the corresponding GLS-estimator. Alternative: Full ML or REML of ( β,θ ) and insert above. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 3

  4. Optimal Designs (for estimation) Classical: select the inputs (and weights)   ⋯ p p , , , p =  1 2 n  ξ N ⋯   z z , , , z 1 2 n such that a prespecified criterion Φ    ( ) M ξ max  N z , p is optimized. i i Well developed theory for standard (uncorrelated) regression based on Kiefer’s (1959) concept of design measures. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 4

  5. Three Practical Cases: C ase 1 : We are interested only in the trend parameters β and consider θ as known or a nuisance. Case 2 : We are interested only in the covariance parameters θ (sometimes we set β =0 ). Case 3: We are interested in both sets of parameters equally. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 5

  6. D-optimal designs for estimating trend and covariance parameters For the full parameter set the information matrix is   ∂ β θ , ∂ β θ , lnL ( ) lnL ( ) − −      T T  = ξ θ β ; , ∂ ∂ β β ∂ ∂ β θ M ( ) 0 β     . E ξ θ ; ∂ β θ , ∂ β θ ,   0 M ( )  lnL ( ) lnL ( )  θ − −   T T  ∂ ∂ θ β ∂ ∂ θ θ  Use the (weighted) product of the respective determinants as an optimum design criterion (Müller and Stehlík, 2009): α − α 1 Φ , =| ξ | ⋅| ξ | '[ M M ] M ( ) M ( ) β θ β θ Xia G., Miranda M.L. and Gelfand A.E. (2006) suggest to use the trace. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 6

  7. Compound Designs Single purpose criterion is inefficient, thus construct weighted averages ′ ′ Φ ξ α | = Φ α ξ + − α Φ ξ [ ] [ M ( )] (1 ) [ M ( )]. were introduced by Läuter (1976), related to constrained designs: ∗ ′ ′ ξ = Φ ξ . . Φ ξ > κ α , arg max [ M ( )] s t [ M ( )] ( ) ξ ∈Ξ (cf. Cook and Wong, 1994); sometimes standardized (Mcgree et al., 2008): ′ ′ ′ ′ Φ ξ α | = Φ α ξ Φ ξ + − α Φ ξ Φ ξ [ ] [ M ( )]/ [ M ( *)] (1 ) [ M ( )]/ [ M ( *)]. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 7

  8. 7 (9) Issues (surveyed in Müller & Stehlík, 2009) 1. Nonconvexity 2. Asymptotic unidentifiability ( M θ ) 3. Nonreplicability 4. Non-additivity 5. Smit’s paradox 6. Näther’s paradox 7. Impact of dependence on information (M&S paradox) 8. Choice of dependence structure 9. Singular designs (the role of the nugget effect) 2.7.2009 ENBIS EMSE 2009 - St.Etienne 8

  9. The Impact of Dependence I nformation from D-optimal design: when θ is estimated or not estimated respectively. (Müller & Stehlík, 2004) 2.7.2009 ENBIS EMSE 2009 - St.Etienne 9

  10. Design for prediction (EK-optimality) Criterion often based on kriging variance, e.g. 2 | ξ − ˆ min max E y z [( ( ) y z ( )) ] ξ z Additional uncertainty from estimation of θ is taken into account by Zhu (2002) and Zimmerman (2006): { } { } − 1 + ∂ /∂ θ ˆ ˆ min max Var[ ( )] y z tr M ' Var[ y z ( ) ] θ ξ z Abt (1999) and Zhu and Stein (2007) supplement this by T     . ∂ ∂ ˆ ˆ Var[ ( )] y z Var[ ( )] y z − ' 1     M θ     ∂ θ ∂ θ 2.7.2009 ENBIS EMSE 2009 - St.Etienne 10

  11. Recall the Kiefer-Wolfowitz Equivalence Theorem (1960) (Case 1 with uncorrelated errors) ( ) ξ max M β D-criterion: ξ ξ ˆ min max Var[ ( ) | ] y z and G-criterion: ξ z yield same (approximate) optimal designs. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 11

  12. Conjecture: One can always find an α such that the compound design based upon Φ , '[ M M ] is (in some to be defined sense) close to designs β θ following from Zhu’s EK-(empirical kriging)-optimality. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 12

  13. Example : Ornstein-Uhlenbeck process d − 2 , = σ cov( z z ´) e θ constant trend η(.) = β Case 1 (Kiselak and Stehlík, 2007, Dette et al., 2007): uniform (space-filling) design is D-optimal! Case 2 (Müller and Stehlik, 2009, Zagoraiou and Baldi-Antognini, 2009): D-optimal design collapses! 0.824 0.822 0.820 Case 3 : regulatory version. 0.818 0.816 0.814 0.2 0.4 0.6 0.8 1.0 2.7.2009 ENBIS EMSE 2009 - St.Etienne 13

  14. Exchange algorithms (Fedorov/Wynn, 1972) S ξ and consist in a simple exchange of points from the two sets s ∖ at every iteration, namely S X s ξ s         1 1  ∖  −   +  ξ + = ξ , ∪ , , x x      s s s n n s 1      s s         where + − = φ , ξ and = φ , ξ . x arg max ( x ) x arg min ( x ) s s s s ∖ ∈ ∈ x S x S X s ξ ξ s s Version: Cook and Nachtsheim, 1980 Survey: Royle, 2002 2.7.2009 ENBIS EMSE 2009 - St.Etienne 14

  15. Suggested Variant: Hybrid with Simulated Annealing S ξ • Make the best exchange between a point from sets s ∖ and a randomly chosen point from at every S X s ξ s iteration • If there is no improvement, give more weight to points farer from the selected and draw anew. • Perhaps use a stochastic acceptance operator (decreasing temperature) to improve performance. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 15

  16. Case 3 for θ =1 and varying α =0,0.7,1 0 0.5 1 2.7.2009 ENBIS EMSE 2009 - St.Etienne 16

  17. Case 3 for α =0.9 and varying θ =0.1,1,10 0 0.5 1 2.7.2009 ENBIS EMSE 2009 - St.Etienne 17

  18. Efficiency Comparison 2.7.2009 ENBIS EMSE 2009 - St.Etienne 18

  19. References (www.ifas.jku.at) Müller, W.G., "Collecting Spatial Data. ", 3rd revised and extended edition, Springer Verlag, Heidelberg, 2007. Müller, W.G. and Stehlík, M., “An Example of D-optimal Designs in the Case of Correlated Errors”, in J. Antoch (Ed.), COMPSTAT2004 Proceedings in Computational Statistics, Springer, 1519-1526, 2004. Müller, W.G. and Stehlík, M., “D-Optimal Spatial Designs for Estimating Trend and Covariance Parameters”, in Statistics for Spatio-Temporal Modelling, Proceedings of the 4th International Workshop on Statistics for Spatio-Temporal Modelling (METMA 5), Mateu, Porcu, Zocchi (Eds.), 69-77, 2008. Müller, W.G. and Stehlík, M., “Issues in the Optimal Design of Computer Simulation Experiments” in Applied Stochastic Models in Business and Industry , 25(2), 153- 177, 2009. Müller, W.G. and Stehlík, M., “Compound Optimal Spatial Design”, accepted for Environmetrics . Stehlík, M. and Müller, W.G., “Fisher Information in the Design of Computer Simulation Experiments” in Journal of Physics: Conference Series, 2008. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 19

  20. ISBIS is a new international society and one of the newest Sections of the International Statistical Institute (ISI) founded in April 2005. http://www.isbis.org/ Soliciting proposals for invited sessions at ISI Dublin 2011 ! 2.7.2009 ENBIS EMSE 2009 - St.Etienne 20

  21. 2.7.2009 ENBIS EMSE 2009 - St.Etienne 21

  22. Problem #1: Non-additivity of the Information Matrix Leads to unseparability of information contributions through design measures! 1 ∑∑   ( ) ( ) ( ) − 1 T ξ = ξ M X z ( ) C X z '   N N N z z , ' z z ' Remedy: e.g. interpretation of design measures as amount of noise suppression (Pázman & M., 1998, M.+P., 2003) 2.7.2009 ENBIS EMSE 2009 - St.Etienne 22

  23. Problem #2: Use of Fisher Information Matrix If covariance parameters θ are included in the estimation (cases 2 & 3), the FI matrix contains a block     ∂ ξ θ , ∂ ξ θ , 1 C ( ) C ( ) − −  1 1  ξ θ , = ξ θ , ξ θ , M ´( )} tr C ( ) C ( ) ij  ∂ θ ∂ θ  2   i j Then its interpretation as being inversely proportional to asymptotic covariance matrix of parameters fails (Abt & Welch, 1998). Remedy: small normal error theory by Pázman (2007). 2.7.2009 ENBIS EMSE 2009 - St.Etienne 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend