total synthesis of cyanolide a in the absence of
play

Total Synthesis of Cyanolide A in the Absence of Protecting Groups, - PowerPoint PPT Presentation

Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles Waldeck, A.R.; Krische, M.J. Angew. Chem. Soc. , 2013 , 52 , 1. O O OMe MeO


  1. Total Synthesis of Cyanolide A in the Absence of Protecting Groups, Chiral Auxiliaries, or Premetalated Carbon Nucleophiles Waldeck, ¡A.R.; ¡Krische, ¡M.J. ¡ Angew. ¡Chem. ¡Soc. , ¡ 2013 , ¡ 52 , ¡1. ¡ O O OMe MeO O O O OMe MeO O O O OMe OMe O O Wipf Group Current Literature Brandon Parks March 23 rd , 2013

  2. Cyanolide A Ø Isolated cyanobacterium Lyungbya bouillonii in 2010 Ø Related to the clavoslide family of natural products Ø Possesses significant molluscicidal activity (LC 50 = 1.2 µ M) against Biophalaria glabrata (water snail) involved in schistosomiasis O O OMe MeO O O O OMe MeO O O O OMe OMe O O Pereira, A.R.; McCue, C.F.; Gerwick, W.H. J. Nat. Prod. 2010 , 73 , 217.

  3. Schistosomiasis Ø Caused by a parasitic worm often carried by Biophalaria glabrata (water snail) – ~200 million people are currently infected Ø Leads to organ damage, impaired growth and cognitive development in children, associated with increased risks of bladder cancer Ø Several treatments are known but have several side-effects O NO 2 O N Cl N H Cl N O OH praziquantel niclosamide Chitsulo, L.; Engels, D.A.; Montresor, S.L. Acta Trop . 2000 , 77 , 41.

  4. Floreancig Retrosynthesis of Clavsolide A dimerization O O OMe MeO O OPG O O O OMe X MeO O O O OMe OMe OH O O oxidative cyclization H O OPG HO OPG LG + X X OAc Peh, G.; Floreancig, P.E. Org. Lett. 2012 , 14 , 5614.

  5. Precursor Synthesis OTIPS Et 2 Zn, Pd(OAc) 2 H OMs Ph 3 P HO O OTIPS + CH 2 Cl 2 , -20 °C H 82% TMS TMS 8:1 d.r., 85% ee A OMs OTIPS OTIPS H H 1. NaH, 15-C-5, THF; O AcO O A , 0 °C, 63% + 2. [( p -cymene)RuCl 2 ] 2 HOAc, Na 2 CO 3 , toluene OAc OAc 80 °C, 6 ( B , 55%) or 12 h ( C , 69%) C B [CpRu(NCCH 3 ) 3 ]PF 6 PhMe 2 SiH acetone 71% OTIPS H O PhMe 2 Si OAc

  6. Key Oxidative Cyclization OTIPS OTIPS DDQ, LiClO 4 H O O 2,6-Cl 2 Py PhMe 2 Si PhMe 2 Si DCE, 40 °C, 6 h 51% OAc O OTIPS OTIPS DDQ, LiClO 4 H 6 steps AcO O AcO O 2,6-Cl 2 Py clavosolide A 14 steps (LLS), 20 total steps DCE, 1.5 h 62% OAc O

  7. Rychnovsky Retrosynthesis of Cyanolide A Sakurai dimerization/ macrocyclization TMS H O O O OMe MeO O OH O O O OMe O O MeO O O O OMe OH O OMe O O O H TMS O OH esterfication O OH TMS HO TMS O OH CH(OMe) 2 CH(OMe) 2 Gesinki, M.R.; Rychonovsky, S.D. J. Am. Chem. Soc. 2011 , 133 , 9727.

  8. Rychnovsky “Monomer” Synthesis 1. ClMgCH 3 TMS 1. LiCH 2 TMS Pd(PPh 3 ) 4 OEt O OEt 97% 87% EtO OEt 2. KHMDS, PhNTf 2 EtO OTf 2. p TSA · H 2 O 97% 97% S 1. (-)-sparteine O PhBCl 2 O O OH S N 70% + TMS TMS H HO 2. LiOH 91% OH I 2 , MeOH O (MeS) 2 CH 2 CH(SMe) 2 62% n -BuLi 100% O OH OH TMS O OH Cl 3 PhCOCl O CH(OMe) 2 + TMS HO DMAP, Et 3 N 61% CH(OMe) 2

  9. Rychnovsky Formal Total Synthesis H H O OH O O O TMS O O O O OsO 4 , NMO; O TMSOTf O O O O NaIO 4 CH 2 Cl 2 82% 76% O H O O H CH(OMe) 2 H OH O Ref. O O NaBH 4 cyanolide A O O 96% HO O H

  10. Krische First Generation Synthesis MesN NMes Cl Ru Cl COEt [{Ir(cod)Cl} 2 ] (5 mol%) i PrO chiral ligand (10 mol%) OH OH OH OH (10 mol%) 4-Cl-3-NO 2 -BzOH (20 mol%) OH Cs 2 CO 3 (40 mol%) O O (2000 mol%) dioxane, 100 ° C AcO EtOC (s)-Cl,MeO-biphep (1000 mol%) DCE, 80 ° C 48%, 20:1 d.r., >99% ee 75%, 10:1 d.r. (S)-binap (gram scale) 40%, 20:1 d.r., >99% ee MesN NMes Cl OMe Ru Cl PhS OMe OMe i PrO O OH O OMe OMe (10 mol%) (150 mol%) O O O ethylene (1 atm) MeOTf (40 mol%) OMe toluene, 60 ° C 4 Å M.S. (200 wt%) EtOC EtOC Et 2 O 70% 69%, 2:1 d.r. Waldeck, A.R.; Krische, M.J. Angew. Chem. Int. Ed. 2013 , 52 , 1. Iridium-Catalyzed Carbonyl Allylation: Kim. I.S.; Ngai, M.Y.; Krische, M.J. J. Am. Chem. Soc. 2008 , 130 , 14891.

  11. Krische First Generation Synthesis OMe OMe O OMe OsO 4 (1 mol%) O OMe Li( s Bu) 3 BH (100 mol%) oxone (400 mol) O O OMe O O THF, -78 to 25 ° C OMe DMF HO EtOC 73%, 4:1 d.r. CO 2 H OMe O O O OMe OMe MeO MNBA (300 mol%) O O O OMe DMAP (2000 mol%) O O OMe MeO O O O toluene, 90 ° C OMe HO 18 % (over 2 steps) OMe O O cyanolide A 7 steps (LLS), 11 total steps

  12. Krische Second Generation Synthesis OMe HO COEt PhS OMe COEt OMe O OMe O OMe ozone OMe (150 mol%) OH O OMe THF, -78 ° C; O O OMe Li( s Bu) 3 BH (1000 %) MeOTf (40 mol%) O O O HO OMe 4 Å M.S. (200 wt%) THF, -78 to 25 ° C Et 2 O EtOC EtOC 68%, 2:1 d.r. 71%, 5:1 d.r. HO O OMe TEMPO (30 mol%) O OMe NaOCl (225 mol%), NaHCO 3(aq) 1,3,5,-Cl 3 -BzCl (120 mol%) CH 2 Cl 2 , 0 ° C; Et 3 N (140 mol%) cyanolide A O O OMe 6 steps (LLS), 10 total steps iosbutylene (1400 mol%), DMAP (500 mol%) HO toluene, 120 ° C NaClO 2 (225 mol%), Na 2 HPO 4(aq) , 47% NaBr (aq) , t BuOH 62%

  13. Conclusions Ø Shortest route (6 steps LLS) to cyanolide A to date in 5.1% overall yield Ø Showcases an enantioselective Ir-catalyzed carbonyl allylation methodology utilizing alcohols Ø Demonstrates a Ru-catalyzed cross-metathesis/oxa-Michael cyclization

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend