total generalized variation from regularization theory to
play

Total generalized variation: From regularization theory to - PowerPoint PPT Presentation

Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Total generalized variation: From regularization theory to applications in imaging Kristian Bredies Institute for


  1. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Total Generalized Variation Definition: �� � u div k v d x TGV k � v ∈ C k c (Ω , Sym k (I R d )) , α ( u ) = sup � Ω � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 � α = ( α 0 , . . . , α k − 1 ) > 0 weights Basic properties: [B./Kunisch/Pock ’10] TGV k α is proper, convex, lower semi-continuous TGV k α is translation and rotation invariant TGV k α + � · � 1 gives Banach space BGV k α (Ω) ker(TGV k α ) = P k − 1 (Ω) polynomials of degree less than k α measures piecewise P k − 1 only at the interfaces TGV k Introduction TGV Applications Summary K. Bredies 8 / 51

  2. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Total Generalized Variation Definition: �� � u div k v d x TGV k � v ∈ C k c (Ω , Sym k (I R d )) , α ( u ) = sup � Ω � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 � α = ( α 0 , . . . , α k − 1 ) > 0 weights Basic properties: [B./Kunisch/Pock ’10] TGV k α is proper, convex, lower semi-continuous TGV k α is translation and rotation invariant TGV k α + � · � 1 gives Banach space BGV k α (Ω) ker(TGV k α ) = P k − 1 (Ω) polynomials of degree less than k α measures piecewise P k − 1 only at the interfaces TGV k Introduction TGV Applications Summary K. Bredies 8 / 51

  3. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Total Generalized Variation Definition: �� � u div k v d x TGV k � v ∈ C k c (Ω , Sym k (I R d )) , α ( u ) = sup � Ω � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 � α = ( α 0 , . . . , α k − 1 ) > 0 weights Basic properties: [B./Kunisch/Pock ’10] TGV k α is proper, convex, lower semi-continuous TGV k α is translation and rotation invariant TGV k α + � · � 1 gives Banach space BGV k α (Ω) ker(TGV k α ) = P k − 1 (Ω) polynomials of degree less than k α measures piecewise P k − 1 only at the interfaces TGV k Introduction TGV Applications Summary K. Bredies 8 / 51

  4. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Total Generalized Variation Definition: �� � u div k v d x TGV k � v ∈ C k c (Ω , Sym k (I R d )) , α ( u ) = sup � Ω � div l v � ∞ ≤ α l , l = 0 , . . . , k − 1 � α = ( α 0 , . . . , α k − 1 ) > 0 weights Basic properties: [B./Kunisch/Pock ’10] TGV k α is proper, convex, lower semi-continuous TGV k α is translation and rotation invariant TGV k α + � · � 1 gives Banach space BGV k α (Ω) ker(TGV k α ) = P k − 1 (Ω) polynomials of degree less than k α measures piecewise P k − 1 only at the interfaces TGV k Introduction TGV Applications Summary K. Bredies 8 / 51

  5. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Denoising � u − f � 2 + TGV k Solve: min α ( u ) 2 u ∈ L 2 (Ω) Noisy image Introduction TGV Applications Summary K. Bredies 9 / 51

  6. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Denoising � u − f � 2 + TGV k Solve: min α ( u ) 2 u ∈ L 2 (Ω) TV regularization Introduction TGV Applications Summary K. Bredies 9 / 51

  7. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Denoising � u − f � 2 + TGV k Solve: min α ( u ) 2 u ∈ L 2 (Ω) TV-TV 2 infimal-convolution regularization Introduction TGV Applications Summary K. Bredies 9 / 51

  8. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Denoising � u − f � 2 + TGV k Solve: min α ( u ) 2 u ∈ L 2 (Ω) TGV 2 α regularization Introduction TGV Applications Summary K. Bredies 9 / 51

  9. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Denoising � u − f � 2 + TGV k Solve: min α ( u ) 2 u ∈ L 2 (Ω) TGV 3 α regularization Introduction TGV Applications Summary K. Bredies 9 / 51

  10. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Questions How to interpret TGV ? How is higher-order information incorporated? Introduction TGV Applications Summary K. Bredies 10 / 51

  11. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Questions How to interpret TGV ? How is higher-order information incorporated? Can TGV be used as regularization functional? Goal: Solve, for a large class of K , 1 2 � Ku − f � 2 2 + TGV k min α ( u ) u ∈ L p (Ω) Introduction TGV Applications Summary K. Bredies 10 / 51

  12. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Questions How to interpret TGV ? How is higher-order information incorporated? Can TGV be used as regularization functional? Goal: Solve, for a large class of K , 1 2 � Ku − f � 2 2 + TGV k min α ( u ) u ∈ L p (Ω) Are the theoretical results applicable in practice? Are there efficient minimization algorithms? Does the model lead to improvements in image reconstruction? Introduction TGV Applications Summary K. Bredies 10 / 51

  13. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Interpretation: TGV of second order Minimum characterization: � � TGV 2 α ( u ) = w ∈ BD(Ω) α 1 min |∇ u − w | + α 0 |E ( w ) | Ω Ω R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } BD(Ω) = { w ∈ L 1 (Ω , I Vector fields of bounded deformation Intuitive interpretation: Locally: ∇ u smooth Locally: u jumps � w = ∇ u ≈ optimal � w = 0 ≈ optimal � TGV 2 � TGV 2 � loc |∇ 2 u | � α ∼ α 0 α ∼ α 1 loc |∇ u | Optimal balancing between ∇ u and ∇ 2 u � TGV 2 α (pw. smooth) < TGV 2 α (staircases) � preferred Radon norm � measure-based decomposition Introduction TGV Applications Summary K. Bredies 11 / 51

  14. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Interpretation: TGV of second order Minimum characterization: � � TGV 2 α ( u ) = w ∈ BD(Ω) α 1 min |∇ u − w | + α 0 |E ( w ) | Ω Ω R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } BD(Ω) = { w ∈ L 1 (Ω , I Vector fields of bounded deformation Intuitive interpretation: Locally: ∇ u smooth Locally: u jumps � w = ∇ u ≈ optimal � w = 0 ≈ optimal � TGV 2 � TGV 2 � loc |∇ 2 u | � α ∼ α 0 α ∼ α 1 loc |∇ u | Optimal balancing between ∇ u and ∇ 2 u � TGV 2 α (pw. smooth) < TGV 2 α (staircases) � preferred Radon norm � measure-based decomposition Introduction TGV Applications Summary K. Bredies 11 / 51

  15. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Interpretation: TGV of second order Minimum characterization: � � TGV 2 α ( u ) = w ∈ BD(Ω) α 1 min |∇ u − w | + α 0 |E ( w ) | Ω Ω R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } BD(Ω) = { w ∈ L 1 (Ω , I Vector fields of bounded deformation Intuitive interpretation: Locally: ∇ u smooth Locally: u jumps � w = ∇ u ≈ optimal � w = 0 ≈ optimal � TGV 2 � TGV 2 � loc |∇ 2 u | � α ∼ α 0 α ∼ α 1 loc |∇ u | Optimal balancing between ∇ u and ∇ 2 u � TGV 2 α (pw. smooth) < TGV 2 α (staircases) � preferred Radon norm � measure-based decomposition Introduction TGV Applications Summary K. Bredies 11 / 51

  16. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Interpretation: TGV of second order Minimum characterization: � � TGV 2 α ( u ) = w ∈ BD(Ω) α 1 min |∇ u − w | + α 0 |E ( w ) | Ω Ω R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } BD(Ω) = { w ∈ L 1 (Ω , I Vector fields of bounded deformation Intuitive interpretation: Locally: ∇ u smooth Locally: u jumps � w = ∇ u ≈ optimal � w = 0 ≈ optimal � TGV 2 � TGV 2 � loc |∇ 2 u | � α ∼ α 0 α ∼ α 1 loc |∇ u | Optimal balancing between ∇ u and ∇ 2 u � TGV 2 α (pw. smooth) < TGV 2 α (staircases) � preferred Radon norm � measure-based decomposition Introduction TGV Applications Summary K. Bredies 11 / 51

  17. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING TGV regularization Joint work with Tuomo Valkonen Exemplarily: Solution of linear ill-posed inverse problems Total Generalized Variation of second order Minimize: Inverse Problem: Tikhonov-functional solve Ku = f R d bounded domain � Ku − f � 2 Ω ⊂ I H min K : L p (Ω) → H 2 u ∈ L p (Ω) + TGV 2 α ( u ) linear and continuous Introduction TGV Applications Summary K. Bredies 12 / 51

  18. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING TGV regularization Joint work with Tuomo Valkonen Exemplarily: Solution of linear ill-posed inverse problems Total Generalized Variation of second order Minimize: Inverse Problem: Tikhonov-functional solve Ku = f R d bounded domain � Ku − f � 2 Ω ⊂ I H min K : L p (Ω) → H 2 u ∈ L p (Ω) + TGV 2 α ( u ) linear and continuous � Nonsmooth optimization problem Which conditions ensure existence of solutions? Are the solutions stable with respect to f ? Introduction TGV Applications Summary K. Bredies 12 / 51

  19. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING TGV regularization Joint work with Tuomo Valkonen Exemplarily: Solution of linear ill-posed inverse problems Total Generalized Variation of second order Minimize: Inverse Problem: Tikhonov-functional solve Ku = f R d bounded domain � Ku − f � 2 Ω ⊂ I H min K : L p (Ω) → H 2 u ∈ L p (Ω) + TGV 2 α ( u ) linear and continuous � Nonsmooth optimization problem Which conditions ensure existence of solutions? Are the solutions stable with respect to f ? � Show topological equivalence with BV(Ω) Introduction TGV Applications Summary K. Bredies 12 / 51

  20. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Vector fields of bounded deformation BD(Ω) = { w ∈ L 1 (Ω , I R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } � w � BD = � w � 1 + �E ( w ) � M Well-known in the theory of mathematical plasticity Some properties: BD(Ω) is a Banach space R d | ker( E ) = { w : Ω → I w ( x ) = Ax + b , A T = − A } ⊂ BD(Ω) Space of infinitesimal rigid displacements Sobolev-Korn inequality : � w − Rw � 1 ≤ C �E ( w ) � M R : BD(Ω) → ker( E ) linear projection Introduction TGV Applications Summary K. Bredies 13 / 51

  21. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Vector fields of bounded deformation BD(Ω) = { w ∈ L 1 (Ω , I R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } � w � BD = � w � 1 + �E ( w ) � M Well-known in the theory of mathematical plasticity Some properties: BD(Ω) is a Banach space R d | ker( E ) = { w : Ω → I w ( x ) = Ax + b , A T = − A } ⊂ BD(Ω) Space of infinitesimal rigid displacements Sobolev-Korn inequality : � w − Rw � 1 ≤ C �E ( w ) � M R : BD(Ω) → ker( E ) linear projection Introduction TGV Applications Summary K. Bredies 13 / 51

  22. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Vector fields of bounded deformation BD(Ω) = { w ∈ L 1 (Ω , I R d ) | E ( w ) ∈ M (Ω , Sym 2 (I R d )) } � w � BD = � w � 1 + �E ( w ) � M Well-known in the theory of mathematical plasticity Some properties: BD(Ω) is a Banach space R d | ker( E ) = { w : Ω → I w ( x ) = Ax + b , A T = − A } ⊂ BD(Ω) Space of infinitesimal rigid displacements Sobolev-Korn inequality : � w − Rw � 1 ≤ C �E ( w ) � M R : BD(Ω) → ker( E ) linear projection Introduction TGV Applications Summary K. Bredies 13 / 51

  23. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Topological equivalence R d sufficiently smooth ⇒ Theorem: Ω ⊂ I c � u � BV ≤ � u � 1 + TGV 2 ∀ u ∈ BGV 2 α ( u ) ≤ C � u � BV α (Ω) Introduction TGV Applications Summary K. Bredies 14 / 51

  24. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Topological equivalence R d sufficiently smooth ⇒ Theorem: Ω ⊂ I c � u � BV ≤ � u � 1 + TGV 2 ∀ u ∈ BGV 2 α ( u ) ≤ C � u � BV α (Ω) Proof: � � 1 We have � u � BV ≤ C 1 �∇ u − Rw � M + � u � 1 ∀ w ∈ BD(Ω) 2 Sobolev-Korn inequality + minimum characterization: �∇ u − Rw � M ≤ �∇ u − w � M + � w − Rw � 1 � � ≤ C 3 α 1 �∇ u − w � M + α 0 �E ( w ) � M inf w ∈ BD(Ω) �∇ u − Rw � M ≤ C 3 TGV 2 ⇒ α ( u ) � u � 1 + TGV 2 � � 3 With the help of 1 : ⇒ � u � BV ≤ C 4 α ( u ) 4 Finally: TGV 2 α ( u ) ≤ α 1 TV( u ) � u � 1 + TGV 2 ⇒ α ( u ) ≤ C 5 � u � BV Introduction TGV Applications Summary K. Bredies 14 / 51

  25. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Topological equivalence R d sufficiently smooth ⇒ Theorem: Ω ⊂ I c � u � BV ≤ � u � 1 + TGV 2 ∀ u ∈ BGV 2 α ( u ) ≤ C � u � BV α (Ω) Proof: � � 1 We have � u � BV ≤ C 1 �∇ u − Rw � M + � u � 1 ∀ w ∈ BD(Ω) 2 Sobolev-Korn inequality + minimum characterization: �∇ u − Rw � M ≤ �∇ u − w � M + � w − Rw � 1 � � ≤ C 3 α 1 �∇ u − w � M + α 0 �E ( w ) � M inf w ∈ BD(Ω) �∇ u − Rw � M ≤ C 3 TGV 2 ⇒ α ( u ) � u � 1 + TGV 2 � � 3 With the help of 1 : ⇒ � u � BV ≤ C 4 α ( u ) 4 Finally: TGV 2 α ( u ) ≤ α 1 TV( u ) � u � 1 + TGV 2 ⇒ α ( u ) ≤ C 5 � u � BV Introduction TGV Applications Summary K. Bredies 14 / 51

  26. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Topological equivalence R d sufficiently smooth ⇒ Theorem: Ω ⊂ I c � u � BV ≤ � u � 1 + TGV 2 ∀ u ∈ BGV 2 α ( u ) ≤ C � u � BV α (Ω) Proof: � � 1 We have � u � BV ≤ C 1 �∇ u − Rw � M + � u � 1 ∀ w ∈ BD(Ω) 2 Sobolev-Korn inequality + minimum characterization: �∇ u − Rw � M ≤ �∇ u − w � M + � w − Rw � 1 � � ≤ C 3 α 1 �∇ u − w � M + α 0 �E ( w ) � M inf w ∈ BD(Ω) �∇ u − Rw � M ≤ C 3 TGV 2 ⇒ α ( u ) � u � 1 + TGV 2 � � 3 With the help of 1 : ⇒ � u � BV ≤ C 4 α ( u ) 4 Finally: TGV 2 α ( u ) ≤ α 1 TV( u ) � u � 1 + TGV 2 ⇒ α ( u ) ≤ C 5 � u � BV Introduction TGV Applications Summary K. Bredies 14 / 51

  27. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Topological equivalence R d sufficiently smooth ⇒ Theorem: Ω ⊂ I c � u � BV ≤ � u � 1 + TGV 2 ∀ u ∈ BGV 2 α ( u ) ≤ C � u � BV α (Ω) Proof: � � 1 We have � u � BV ≤ C 1 �∇ u − Rw � M + � u � 1 ∀ w ∈ BD(Ω) 2 Sobolev-Korn inequality + minimum characterization: �∇ u − Rw � M ≤ �∇ u − w � M + � w − Rw � 1 � � ≤ C 3 α 1 �∇ u − w � M + α 0 �E ( w ) � M inf w ∈ BD(Ω) �∇ u − Rw � M ≤ C 3 TGV 2 ⇒ α ( u ) � u � 1 + TGV 2 � � 3 With the help of 1 : ⇒ � u � BV ≤ C 4 α ( u ) 4 Finally: TGV 2 α ( u ) ≤ α 1 TV( u ) � u � 1 + TGV 2 ⇒ α ( u ) ≤ C 5 � u � BV Introduction TGV Applications Summary K. Bredies 14 / 51

  28. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Existence and stability Corollary: � u − P 1 u � d / ( d − 1) ≤ C TGV 2 Coercivity: α ( u ) P 1 → Π 1 linear projection on the affine functions Π 1 Theorem: 1 < p ≤ d / ( d − 1) Optimization problem     K : L p (Ω) → H 1     2 � Ku − f � 2 min   linear and continuous, ⇒ u ∈ L p (Ω) + TGV 2 α ( u ) H Hilbert space         K injective on Π 1 possesses a solution Proof: Direct method + coercivity of TGV 2 α Introduction TGV Applications Summary K. Bredies 15 / 51

  29. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Existence and stability Corollary: � u − P 1 u � d / ( d − 1) ≤ C TGV 2 Coercivity: α ( u ) P 1 → Π 1 linear projection on the affine functions Π 1 Theorem: 1 < p ≤ d / ( d − 1) Optimization problem     K : L p (Ω) → H 1     2 � Ku − f � 2 min   linear and continuous, ⇒ u ∈ L p (Ω) + TGV 2 α ( u ) H Hilbert space         K injective on Π 1 possesses a solution Proof: Direct method + coercivity of TGV 2 α u n ⇀ u in L p (Ω) (subseq.) � Stability: f n → f in H ⇒ TGV 2 α ( u n ) → TGV 2 α ( u ) Introduction TGV Applications Summary K. Bredies 15 / 51

  30. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING General orders Next step: Generalization with respect to k � Examine BD(Ω , Sym k (I R d )) = { w ∈ L 1 (Ω , Sym k (I R d )) | E ( w ) ∈ M (Ω , Sym k +1 (I R d )) } � w � BD = � w � 1 + �E ( w ) � M Symmetric tensor fields of bounded deformation Introduction TGV Applications Summary K. Bredies 16 / 51

  31. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) [B. ’11] Theorem: 1 u ∈ D (Ω , Sym k (I R d )) ∗ � ∇ k +1 ⊗ u = 0 in Ω ⇒ distribution with E ( u ) = 0 2 ker( E ) is a subspace of Π k (Ω , Sym k (I R d )) Introduction TGV Applications Summary K. Bredies 17 / 51

  32. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) [B. ’11] Theorem: 1 u ∈ D (Ω , Sym k (I R d )) ∗ � ∇ k +1 ⊗ u = 0 in Ω ⇒ distribution with E ( u ) = 0 2 ker( E ) is a subspace of Π k (Ω , Sym k (I R d )) Furthermore: There is a T such that ∇ k +1 ⊗ u = T E ( u ) for smooth u The fundamental solution for div E reads as: k � k + 1 � Γ η � ( − 1) l E l � div l ( E l +1 η ) � k = l + 1 l =0 E m fundamental solution for ∆ m Introduction TGV Applications Summary K. Bredies 17 / 51

  33. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) R d be a Lipschitz domain Theorem: Let Ω ⊂ I 1 Trace mapping: γ : BD(Ω , Sym k (I R d )) → L 1 ( ∂ Ω , Sym k (I R d )) continuous with respect to strict convergence 2 Gauß-Green theorem: � � � � ( γ u ⊗ ν ) · v d H d − 1 − u · div v d x = v · d E ( u ) Ω ∂ Ω Ω R d )), v ∈ C 1 (Ω , Sym k +1 (I for u ∈ BD(Ω , Sym k (I R d )) R d , Sym k (I R d )) with 3 Zero extension: Eu ∈ BD(I E ( Eu ) = E ( u ) − � ( γ u ⊗ ν ) H d − 1 � ∂ Ω Introduction TGV Applications Summary K. Bredies 18 / 51

  34. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) R d be a Lipschitz domain Theorem: Let Ω ⊂ I 1 Trace mapping: γ : BD(Ω , Sym k (I R d )) → L 1 ( ∂ Ω , Sym k (I R d )) continuous with respect to strict convergence 2 Gauß-Green theorem: � � � � ( γ u ⊗ ν ) · v d H d − 1 − u · div v d x = v · d E ( u ) Ω ∂ Ω Ω R d )), v ∈ C 1 (Ω , Sym k +1 (I for u ∈ BD(Ω , Sym k (I R d )) R d , Sym k (I R d )) with 3 Zero extension: Eu ∈ BD(I E ( Eu ) = E ( u ) − � ( γ u ⊗ ν ) H d − 1 � ∂ Ω Introduction TGV Applications Summary K. Bredies 18 / 51

  35. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) R d be a Lipschitz domain Theorem: Let Ω ⊂ I 1 Trace mapping: γ : BD(Ω , Sym k (I R d )) → L 1 ( ∂ Ω , Sym k (I R d )) continuous with respect to strict convergence 2 Gauß-Green theorem: � � � � ( γ u ⊗ ν ) · v d H d − 1 − u · div v d x = v · d E ( u ) Ω ∂ Ω Ω R d )), v ∈ C 1 (Ω , Sym k +1 (I for u ∈ BD(Ω , Sym k (I R d )) R d , Sym k (I R d )) with 3 Zero extension: Eu ∈ BD(I E ( Eu ) = E ( u ) − � ( γ u ⊗ ν ) H d − 1 � ∂ Ω Introduction TGV Applications Summary K. Bredies 18 / 51

  36. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) [B. ’11] Theorem: 1 Embedding result: BD(Ω , Sym k (I R d )) ֒ → L d / ( d − 1) (Ω , Sym k (I R d )) 2 Sobolev-Korn inequality: � u − Ru � d / ( d − 1) ≤ C �E ( u ) � M Introduction TGV Applications Summary K. Bredies 19 / 51

  37. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) [B. ’11] Theorem: 1 Embedding result: BD(Ω , Sym k (I R d )) ֒ → L d / ( d − 1) (Ω , Sym k (I R d )) 2 Sobolev-Korn inequality: � u − Ru � d / ( d − 1) ≤ C �E ( u ) � M Consequently: Minimum characterization: k � � TGV k α ( u ) = min α k − l |E ( u l − 1 ) − u l | u l ∈ BD(Ω , Sym l (I R d )) , Ω l =1 u 0 = u , u k =0 � Ku − f � 2 + TGV k H Existence of solutions: min α ( u ) 2 u ∈ L p (Ω) if K is injective on Π k − 1 Introduction TGV Applications Summary K. Bredies 19 / 51

  38. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING The spaces BD(Ω , Sym k (I R d )) [B. ’11] Theorem: 1 Embedding result: BD(Ω , Sym k (I R d )) ֒ → L d / ( d − 1) (Ω , Sym k (I R d )) 2 Sobolev-Korn inequality: � u − Ru � d / ( d − 1) ≤ C �E ( u ) � M Consequently: Minimum characterization: k � � TGV k α ( u ) = min α k − l |E ( u l − 1 ) − u l | u l ∈ BD(Ω , Sym l (I R d )) , Ω l =1 u 0 = u , u k =0 � Ku − f � 2 + TGV k H Existence of solutions: min α ( u ) 2 u ∈ L p (Ω) if K is injective on Π k − 1 � “ TV applicable ⇒ TGV applicable” Introduction TGV Applications Summary K. Bredies 19 / 51

  39. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Regularization properties Joint work with Martin Holler Theorem: [B./Holler ’13] u n solution ∼ parameters α n , data f n , � f n − f † � ≤ δ n Multiparameter choice/source condition: 1 α n i → 0 and δ 2 n /α n i → 0 2 lim n →∞ α n i /α n i − 1 > 0 3 Ku † = f † for u † ∈ BV(Ω) Then: Convergence: u n ⇀ ∗ u ∗ � subsequentially TGV k , l α ∗ ( u n ) → TGV k α ∗ ( u ∗ ) u ∗ minimizing-TGV k α ∗ solution Introduction TGV Applications Summary K. Bredies 20 / 51

  40. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Deconvolution Problem: Solve u ∗ k = f k convolution kernel Tikhonov functional: 1 2 � u ∗ k − f � 2 min 2 u ∈ L 2 (Ω) + TGV 2 α ( u ) Noisy data f Introduction TGV Applications Summary K. Bredies 21 / 51

  41. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Deconvolution Problem: Solve u ∗ k = f k convolution kernel Tikhonov functional: 1 2 � u ∗ k − f � 2 min 2 u ∈ L 2 (Ω) + TGV 2 α ( u ) TV-regularized solution Introduction TGV Applications Summary K. Bredies 21 / 51

  42. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Deconvolution Problem: Solve u ∗ k = f k convolution kernel Tikhonov functional: 1 2 � u ∗ k − f � 2 min 2 u ∈ L 2 (Ω) + TGV 2 α ( u ) TGV 2 α -regularized solution Introduction TGV Applications Summary K. Bredies 21 / 51

  43. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Optimization methods Exemplarily: Second-order scalar case TGV 2 , 0 α = TGV 2 α u ∈ L p (Ω) F ( u ) + TGV 2 min α ( u ) Approach: 1 Discretize with finite differences 2 Reformulate as convex-concave saddle-point problem y ∈ Y � Ax , y � + G ( x ) − F ∗ ( y ) min x ∈ X max 3 Use primal-dual algorithm of [Chambolle/Pock ’11] Introduction TGV Applications Summary K. Bredies 22 / 51

  44. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Optimization methods Exemplarily: Second-order scalar case TGV 2 , 0 α = TGV 2 α u ∈ L p (Ω) F ( u ) + TGV 2 min α ( u ) Approach: 1 Discretize with finite differences 2 Reformulate as convex-concave saddle-point problem y ∈ Y � Ax , y � + G ( x ) − F ∗ ( y ) min x ∈ X max 3 Use primal-dual algorithm of [Chambolle/Pock ’11] Introduction TGV Applications Summary K. Bredies 22 / 51

  45. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Optimization methods Exemplarily: Second-order scalar case TGV 2 , 0 α = TGV 2 α u ∈ L p (Ω) F ( u ) + TGV 2 min α ( u ) Approach: 1 Discretize with finite differences 2 Reformulate as convex-concave saddle-point problem y ∈ Y � Ax , y � + G ( x ) − F ∗ ( y ) min x ∈ X max 3 Use primal-dual algorithm of [Chambolle/Pock ’11] y n +1 =( I + σ∂ F ∗ ) − 1 ( y n + σ Ax n )    x n +1 =( I + τ∂ G ) − 1 ( x n − τ A ∗ y n +1 ) x n +1 =2 x n +1 − x n   Introduction TGV Applications Summary K. Bredies 22 / 51

  46. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Saddle-point formulation Finite difference approximations ∇ h , E h , div h = − ( ∇ h ) ∗ etc. Supremum definition of TGV 2 : F ( u ) + � u , (div h ) 2 v � min u max v − I {� v � ∞ ≤ α 0 } ( v ) − I {� ω � ∞ ≤ α 1 } ( div h v ) Introduction TGV Applications Summary K. Bredies 23 / 51

  47. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Saddle-point formulation Finite difference approximations ∇ h , E h , div h = − ( ∇ h ) ∗ etc. Supremum definition of TGV 2 : F ( u ) + � u , (div h ) 2 v � min u max v − I {� v � ∞ ≤ α 0 } ( v ) − I {� ω � ∞ ≤ α 1 } ( div h v ) Introduce constraint ω = div h v and Lagrange multiplier w Introduction TGV Applications Summary K. Bredies 23 / 51

  48. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Saddle-point formulation Finite difference approximations ∇ h , E h , div h = − ( ∇ h ) ∗ etc. Supremum definition of TGV 2 : F ( u ) + � u , div h ω � + � w , div h v − ω � min u , w max v ,ω − I {� v � ∞ ≤ α 0 } ( v ) − I {� ω � ∞ ≤ α 1 } ( ω ) Introduce constraint ω = div h v and Lagrange multiplier w Introduction TGV Applications Summary K. Bredies 23 / 51

  49. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Saddle-point formulation Finite difference approximations ∇ h , E h , div h = − ( ∇ h ) ∗ etc. Supremum definition of TGV 2 : F ( u ) + � u , div h ω � + � w , div h v − ω � min u , w max v ,ω − I {� v � ∞ ≤ α 0 } ( v ) − I {� ω � ∞ ≤ α 1 } ( ω ) Introduce constraint ω = div h v and Lagrange multiplier w � 0 � u � � v � −∇ h � x = , y = , A = , −E h w ω − I F ∗ ( v , ω ) = I {� v � ∞ ≤ α 0 } ( v )+ I {� ω � ∞ ≤ α 1 } ( ω ) G ( u , w ) = F ( u ) , Introduction TGV Applications Summary K. Bredies 23 / 51

  50. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Primal-dual algorithm 1 [B. ’12] Iteration: ω n +1 = P {� · � ∞ ≤ α 1 } ω n + σ ( ∇ h ¯ u n − ¯ � w n ) � � dual update v n +1 = P {� · � ∞ ≤ α 0 } v n + σ E h (¯ w n ) � � u n +1 = ( I + τ∂ F ) − 1 ( u n + τ div h ω n +1 ) � primal update w n +1 = w n + τ (div h v n +1 + ω n +1 ) u n +1 = 2 u n +1 − u n , w n +1 = 2 w n +1 − w n � ¯ ¯ extragradient Introduction TGV Applications Summary K. Bredies 24 / 51

  51. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Primal-dual algorithm 1 [B. ’12] Iteration: ω n +1 = P {� · � ∞ ≤ α 1 } ω n + σ ( ∇ h ¯ u n − ¯ � w n ) � � dual update v n +1 = P {� · � ∞ ≤ α 0 } v n + σ E h (¯ w n ) � � u n +1 = ( I + τ∂ F ) − 1 ( u n + τ div h ω n +1 ) � primal update w n +1 = w n + τ (div h v n +1 + ω n +1 ) u n +1 = 2 u n +1 − u n , w n +1 = 2 w n +1 − w n � ¯ ¯ extragradient P {� · � ∞ ≤ α 0 } , P {� · � ∞ ≤ α 1 } amount to pointwise operations ( I + τ∂ F ) − 1 resolvent mapping � assumed to be known Converges for appropriate choice of σ, τ > 0 [Chambolle/Pock ’11] Introduction TGV Applications Summary K. Bredies 24 / 51

  52. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Applications Examples for Algorithm 1: ( I + τ∂ F ) − 1 ( u ) F ( u ) 1 u + τ f 2 � u − f � 2 H 1 + τ � u − f � 1 f + S τ ( u − f ) S τ soft-shrinkage operator 1 2 � Ku − f � 2 ( I + τ K ∗ K ) − 1 ( u + τ K ∗ f ) H solve, e.g., with CGNE Primary application: Denoising problems Introduction TGV Applications Summary K. Bredies 25 / 51

  53. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Applications Examples for Algorithm 1: ( I + τ∂ F ) − 1 ( u ) F ( u ) 1 u + τ f 2 � u − f � 2 H 1 + τ � u − f � 1 f + S τ ( u − f ) S τ soft-shrinkage operator 1 2 � Ku − f � 2 ( I + τ K ∗ K ) − 1 ( u + τ K ∗ f ) H solve, e.g., with CGNE Primary application: Denoising problems Introduction TGV Applications Summary K. Bredies 25 / 51

  54. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Applications Examples for Algorithm 1: ( I + τ∂ F ) − 1 ( u ) F ( u ) 1 u + τ f 2 � u − f � 2 H 1 + τ � u − f � 1 f + S τ ( u − f ) S τ soft-shrinkage operator 1 2 � Ku − f � 2 ( I + τ K ∗ K ) − 1 ( u + τ K ∗ f ) H solve, e.g., with CGNE Primary application: Denoising problems Introduction TGV Applications Summary K. Bredies 25 / 51

  55. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Primal-dual algorithm 2 Alternative: � Ku , p � + ˜ Additional dual variable: F ( u ) = max F ( u ) − G ( p ) p Needs only resolvents w.r.t. ∂ G , ∂ ˜ F , not ( I + τ∂ F ) − 1 Introduction TGV Applications Summary K. Bredies 26 / 51

  56. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Primal-dual algorithm 2 Alternative: � Ku , p � + ˜ Additional dual variable: F ( u ) = max F ( u ) − G ( p ) p Needs only resolvents w.r.t. ∂ G , ∂ ˜ F , not ( I + τ∂ F ) − 1 Iteration: [B. ’12] p n +1 = ( I + σ∂ G ) − 1 ( p n + σ K ¯ u n )    ω n +1 = P {� · � ∞ ≤ α 1 } ω n + σ ( ∇ h ¯ u n − ¯ � w n ) � v n +1 = P {� · � ∞ ≤ α 0 } v n + σ E h (¯  � w n ) �  u n + τ (div h ω n +1 − K ∗ p n +1 ) u n +1 = ( I + τ∂ ˜ � F ) − 1 � � w n +1 = w n + τ (div h v n +1 + ω n +1 ) u n +1 = 2 u n +1 − u n , w n +1 = 2 w n +1 − w n � ¯ ¯ Introduction TGV Applications Summary K. Bredies 26 / 51

  57. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Applications Examples for Algorithm 2: ( I + σ∂ G ) − 1 ( p ) F ( u ) G ( p ) � p � 2 1 p − σ f 2 � Ku − f � 2 + � f , p � H 2 1 + σ � Ku − f � 1 I {� p � ∞ ≤ 1 } ( p ) + � f , p � P {� p � ∞ ≤ 1 } ( p − σ f ) Here: ˜ F ( u ) = 0 ⇒ ( I + τ∂ ˜ F ) − 1 ( u ) = u Primary application: TGV 2 -regularized solution of Ku = f Introduction TGV Applications Summary K. Bredies 27 / 51

  58. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Applications Examples for Algorithm 2: ( I + σ∂ G ) − 1 ( p ) F ( u ) G ( p ) � p � 2 1 p − σ f 2 � Ku − f � 2 + � f , p � H 2 1 + σ � Ku − f � 1 I {� p � ∞ ≤ 1 } ( p ) + � f , p � P {� p � ∞ ≤ 1 } ( p − σ f ) Here: ˜ F ( u ) = 0 ⇒ ( I + τ∂ ˜ F ) − 1 ( u ) = u Primary application: TGV 2 -regularized solution of Ku = f Introduction TGV Applications Summary K. Bredies 27 / 51

  59. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Outline 1 Introduction 2 Total Generalized Variation Existence and stability for second order Regularization theory for general orders Optimization algorithms 3 Applications Compressive imaging JPEG(2000) decompression and zooming Quantitative susceptibility mapping Dual energy CT denoising 4 Summary Introduction TGV Applications Summary K. Bredies 28 / 51

  60. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Compressive imaging Problem: Reconstruct incomplete data with respect to a given basis Variational formulation: Au = f R ( u ) min “Single-pixel camera” A basis analysis operator Original image R “sparsifying” penalty Introduction TGV Applications Summary K. Bredies 29 / 51

  61. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Compressive imaging Problem: Reconstruct incomplete data with respect to a given basis Variational formulation: Au = f R ( u ) min “Single-pixel camera” A basis analysis operator 1600 measurements R “sparsifying” penalty Compressed sensing: R ( u ) = � u � 1 Captures solution with minimal “ L 0 -norm” with high probability Introduction TGV Applications Summary K. Bredies 29 / 51

  62. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Compressive imaging Problem: Reconstruct incomplete data with respect to a given basis Variational formulation: Au = f R ( u ) min “Single-pixel camera” A basis analysis operator 1600 measurements R “sparsifying” penalty Compressed sensing: In particular: R ( u ) = � u � 1 R ( u ) = TV( u ) Captures solution with “Gradient sparsity” minimal “ L 0 -norm” with high probability Introduction TGV Applications Summary K. Bredies 29 / 51

  63. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Compressive imaging Problem: Reconstruct incomplete data with respect to a given basis Variational formulation: Au = f R ( u ) min “Single-pixel camera” A basis analysis operator 1600 measurements R “sparsifying” penalty Compressed sensing: In particular: R ( u ) = � u � 1 R ( u ) = TV( u ) Captures solution with “Gradient sparsity” minimal “ L 0 -norm” with � Use TGV as high probability penalty Introduction TGV Applications Summary K. Bredies 29 / 51

  64. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Example TV-based reconstruction: Test data: From “Rice Single-Pixel Camera Project” http://dsp.rice.edu/cscamera Reconstruction from 768 samples 384 samples varying number of samples Algorithm: Primal-dual method 2 256 samples 192 samples Introduction TGV Applications Summary K. Bredies 30 / 51

  65. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Example TGV-based reconstruction: Test data: From “Rice Single-Pixel Camera Project” http://dsp.rice.edu/cscamera Reconstruction from 768 samples 384 samples varying number of samples Algorithm: Primal-dual method 2 256 samples 192 samples Introduction TGV Applications Summary K. Bredies 30 / 51

  66. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Image decompression Joint work with Martin Holler JPEG compression scheme: Lossy procedure High compression � disturbing artifacts (ringing, blocking) Original image (8 bpp) Introduction TGV Applications Summary K. Bredies 31 / 51

  67. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Image decompression Joint work with Martin Holler JPEG compression scheme: Lossy procedure High compression � disturbing artifacts (ringing, blocking) JPEG image (0.062 bpp) Introduction TGV Applications Summary K. Bredies 31 / 51

  68. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Image decompression Joint work with Martin Holler JPEG compression scheme: Lossy procedure High compression � disturbing artifacts (ringing, blocking) Goal: Remove artifacts Respect given information JPEG image (0.062 bpp) Introduction TGV Applications Summary K. Bredies 31 / 51

  69. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Application: Image decompression Joint work with Martin Holler JPEG compression scheme: Lossy procedure High compression � disturbing artifacts (ringing, blocking) Goal: Remove artifacts Respect given information � Use TGV image model JPEG image (0.062 bpp) Introduction TGV Applications Summary K. Bredies 31 / 51

  70. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression model JPEG compression scheme: 8x8 blocks DCT Lossless Quantization compression Source Quantization Compressed Image data table Image data Problem: Many images give same JPEG object � convex set C Standard decompression � particular choice � artifacts Introduction TGV Applications Summary K. Bredies 32 / 51

  71. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression model JPEG compression scheme: 8x8 blocks DCT Lossless Quantization compression Source Quantization Compressed Image data table Image data Problem: Many images give same JPEG object � convex set C Standard decompression � particular choice � artifacts Idea: Optimize over all possible choices Introduction TGV Applications Summary K. Bredies 32 / 51

  72. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression model JPEG compression scheme: 8x8 blocks DCT Lossless Quantization compression Source Quantization Compressed Image data table Image data Problem: Many images give same JPEG object TGV Model: � convex set C u ∈ L 2 (Ω) TGV 2 min α ( u ) Standard decompression + I C ( u ) � particular choice � artifacts Idea: Optimize over all possible choices Introduction TGV Applications Summary K. Bredies 32 / 51

  73. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression: Example Decompression of grayscale images: 0.062 bpp standard decompression Introduction TGV Applications Summary K. Bredies 33 / 51

  74. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression: Example Decompression of grayscale images: 0.062 bpp JPEG-TGV decompression Introduction TGV Applications Summary K. Bredies 33 / 51

  75. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression: Example Decompression of color images: 0.051 bpp standard decompression Introduction TGV Applications Summary K. Bredies 34 / 51

  76. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG decompression: Example Decompression of color images: 0.051 bpp JPEG-TGV decompression Introduction TGV Applications Summary K. Bredies 34 / 51

  77. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Towards real-life application Software: Handles all flavors of JPEG (grayscale/color, chroma subsampling, etc.) Fast OpenMP + GPU (CUDA) implementation Interactive applet available Introduction TGV Applications Summary K. Bredies 35 / 51

  78. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Extension to JPEG 2000 JPEG 2000 compression scheme: 00001010 =10 00000100 =40 00000111 =70 00000001 =10 00000100 =40 10000000011 W 00000010 =20 00010000 =16 01011100 =92 00000011 =30 Wavelet- Uncompressed image Bit-level coding JPEG2000 file Transformed image Introduction TGV Applications Summary K. Bredies 36 / 51

  79. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Extension to JPEG 2000 JPEG 2000 compression scheme: 00001010 =10 00000100 =40 00000111 =70 00000001 =10 00000100 =40 10000000011 W 00000010 =20 00010000 =16 01011100 =92 00000011 =30 Wavelet- Uncompressed image Bit-level coding JPEG2000 file Transformed image Source image set: Same structure Introduction TGV Applications Summary K. Bredies 36 / 51

  80. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Extension to JPEG 2000 JPEG 2000 compression scheme: 00001010 =10 00000100 =40 00000111 =70 00000001 =10 00000100 =40 10000000011 W 00000010 =20 00010000 =16 01011100 =92 00000011 =30 Wavelet- Uncompressed image Bit-level coding JPEG2000 file Transformed image Source image set: Same structure � TGV-based decompression can also be applied Introduction TGV Applications Summary K. Bredies 36 / 51

  81. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG 2000: Example Decompression of color images: 0.019 bpp standard decompression Introduction TGV Applications Summary K. Bredies 37 / 51

  82. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING JPEG 2000: Example Decompression of color images: 0.019 bpp JPEG2000-TGV decompression Introduction TGV Applications Summary K. Bredies 37 / 51

  83. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Free extra: Wavelet zooming JPEG 2000: Approximation coeffi- cients (+ precision) Some wavelet coeffi- cients (+ precision) Wavelet zooming: Approximation coeffi- cients (full precision) No wavelet coefficients � same framework can be used Introduction TGV Applications Summary K. Bredies 38 / 51

  84. Mathematical Optimization and INSTITUTE FOR MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Wavelet zooming: Example Test data: Barbara’s headscarf constant interp. cubic interp. Zooming: 64 × 64 → 256 × 256 Haar wavelet+TGV CDF wavelet+TGV Introduction TGV Applications Summary K. Bredies 39 / 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend