topics in timed automata
play

Topics in Timed Automata B. Srivathsan RWTH-Aachen Software - PowerPoint PPT Presentation

Topics in Timed Automata B. Srivathsan RWTH-Aachen Software modeling and Verification group 1/25 Reachability: Does something bad happen? The gate is still open when the train is 2 minutes away from the crossing This problem is


  1. Topics in Timed Automata B. Srivathsan RWTH-Aachen Software modeling and Verification group 1/25

  2. Reachability: Does something bad happen? “The gate is still open when the train is 2 minutes away from the crossing” This problem is PSPACE-complete A theory of timed automata R. Alur and D.L. Dill, TCS’94 2/25

  3. Tools ◮ UPPAAL: Uppsaala university (Sweden) , Aalborg university (Denmark) ◮ KRONOS: Verimag (France) ◮ RED National Taiwan University (Taiwan) ◮ Rabbit Brandenburg TU Cottbus (Germany) 3/25

  4. Tools ◮ UPPAAL: Uppsaala university (Sweden) , Aalborg university (Denmark) ◮ KRONOS: Verimag (France) ◮ RED National Taiwan University (Taiwan) ◮ Rabbit Brandenburg TU Cottbus (Germany) and still research on for efficient algorithms . . . 3/25

  5. Lecture 6: Reachability 4/25

  6. Timed Automata s 2 ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) { y } s 0 s 1 s 3 ( x > 6 ) ( y < 1 ) { y } Run: finite sequence of transitions s 0 s 1 s 3 0 . 4 0 . 5 x 0 0 . 4 0 . 9 y 0 0 0 . 5 ◮ accepting if ends in green state 5/25

  7. Reachability problem Given a TA, does it have an accepting run s 2 ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) { y } s 0 s 1 s 3 ( x > 6 ) ( y < 1 ) { y } Theorem [AD94] This problem is PSPACE-complete first solution based on Regions 6/25

  8. Key idea: Maintain sets of valuations reachable along a path y y y y x x x x ( x ≤ 5 ) ( y ≥ 7 ) q 0 q 1 q 2 q 3 { x } 7/25

  9. Key idea: Maintain sets of valuations reachable along a path x = y ≥ 0 x = y ≥ 0 y − x ≥ 7 y − x ≥ 7 y y y y x x x x ( x ≤ 5 ) ( y ≥ 7 ) q 0 q 1 q 2 q 3 { x } Easy to describe convex sets 7/25

  10. Zones and zone graph ◮ Zone: set of valuations defined by conjunctions of constraints: x ∼ c x − y ∼ c e.g. ( x − y ≥ 1 ) ∧ ( y < 2 ) ◮ Representation: by DBM [Dil89] Sound and complete [DT98] Zone graph preserves state reachability 8/25

  11. Problem of non-termination y x ( y = 1 ) { y } { x , y } q 0 q 1 9/25

  12. Abstractions Zone graph q 0 , Z 0 × × q 1 , Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  13. Abstractions q 0 , Z 0 Zone graph q 0 , Z 0 × × q 1 , Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  14. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph q 0 , Z 0 × × q 1 , Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  15. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × q 1 , Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  16. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × q 1 , Z 1 W 1 q 1 , × Z 1 q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  17. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × a ( W 1 ) q 1 , Z 1 W 1 q 1 , × Z 1 q 2 , q 3 , Z 2 Z 3 . . . . . . potentially infinite... 10/25

  18. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × a ( W 1 ) q 1 , Z 1 W 1 q 1 , × Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . . . q 2 , q 3 , W 2 W 3 Z 3 Z 2 potentially infinite... 10/25

  19. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × a ( W 1 ) q 1 , Z 1 W 1 q 1 , × Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . a ( W 3 ) . . q 2 , q 3 , W 2 W 3 Z 3 Z 2 potentially infinite... a ( W 2 ) 10/25

  20. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × a ( W 1 ) q 1 , Z 1 W 1 q 1 , × Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . a ( W 3 ) q 2 , q 3 , . . W 2 W 3 Z 2 Z 3 potentially infinite... a ( W 2 ) Find a such that number of abstracted sets is finite 10/25

  21. Abstractions a ( Z 0 ) q 0 , Z 0 Zone graph × q 0 , × Z 0 × × a ( W 1 ) q 1 , Z 1 W 1 q 1 , × Z 1 × q 2 , q 3 , Z 2 Z 3 . . . . a ( W 3 ) q 2 , q 3 , . . W 2 W 3 Z 2 Z 3 potentially infinite... a ( W 2 ) Coarser the abstraction, smaller the abstracted graph 10/25

  22. Condition 1 : Abstractions should have finite range Condition 2 : Abstractions should be sound ⇒ a ( W ) can contain only valuations simulated by W a ( W ) g 5 g 4 g 2 g 1 g 3 R v 5 R 4 R 2 R 1 R 3 q , W v ′ g 1 g 2 g 3 g 4 g 5 R 1 R 2 R 3 R 5 R 4 11/25

  23. Condition 1 : Abstractions should have finite range Condition 2 : Abstractions should be sound ⇒ a ( W ) can contain only valuations simulated by W a ( W ) g 5 g 4 g 2 g 1 g 3 R v 5 R 4 R 2 R 1 R 3 q , W v ′ g 1 g 2 g 3 g 4 g 5 R 1 R 2 R 3 R 5 R 4 Question: Why not add all the valuations simulated by W ? 11/25

  24. Bounds and abstractions Theorem [LS00] Coarsest simulation relation is EXPTIME-hard s 2 ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) { y } s 0 s 1 s 3 ( x > 6 ) ( y < 1 ) { y } 12/25

  25. Bounds and abstractions Theorem [LS00] Coarsest simulation relation is EXPTIME-hard ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) ( x > 6 ) ( y < 1 ) 12/25

  26. Bounds and abstractions Theorem [LS00] Coarsest simulation relation is EXPTIME-hard ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) ( x > 6 ) ( y < 1 ) M-bounds [AD94] M ( x ) = 6 , M ( y ) = 3 v � M v ′ 12/25

  27. Bounds and abstractions Theorem [LS00] Coarsest simulation relation is EXPTIME-hard ( y ≤ 3 ) ( x < 4 ) ( x < 1 ) ( x > 6 ) ( y < 1 ) M-bounds [AD94] LU-bounds [BBLP04] L ( x ) = 6 , L ( y ) = −∞ M ( x ) = 6 , M ( y ) = 3 U ( x ) = 4 , U ( y ) = 3 v � M v ′ v � LU v ′ 12/25

  28. Abstractions in literature [BBLP04, Bou04] ( � LU ) a � LU ( � M ) Closure M 13/25

  29. Abstractions in literature [BBLP04, Bou04] ( � LU ) a � LU ( � M ) Closure M Non-convex 13/25

  30. Abstractions in literature [BBLP04, Bou04] Extra + ( � LU ) a � LU LU Extra + ( � M ) Extra LU Closure M M Non-convex Extra M Convex Only convex abstractions used in implementations ! 13/25

  31. Timed automata Zone graph Problem of non-termination Use finite abstractions Zones Bounds as parameters are efficient Restriction to convex abstractions Non-convex abstr. are coarser 14/25

  32. Timed automata Zone graph Problem of non-termination Use finite abstractions Zones Bounds as parameters are efficient Restriction to convex abstractions Non-convex abstr. are coarser Question: Can we benefit from both together? 14/25

  33. In this lecture... Efficient use of the non-convex Closure approximation Using non-convex approximations for efficient analysis of timed automata F. Herbreteau, D. Kini, B. Srivathsan, I. Walukiewicz. FSTTCS’11 15/25

  34. Observation 1 : We can use abstractions without storing them 16/25

  35. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 a ( W 1 ) q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 Standard algorithm: covering tree q 3 Z 3 17/25

  36. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 a ( W 1 ) q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 q 3 Pick simulation based a Z 3 17/25

  37. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 a ( W 1 ) q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 q 3 Pick simulation based a Z 3 17/25

  38. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 a ( W 1 ) q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 q 3 Pick simulation based a Z 3 17/25

  39. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 � a ( W 1 ) q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 q 3 Pick simulation based a Z 3 17/25

  40. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 � a ( W 1 ) � q 1 q 3 = q 1 ∧ W 1 , a ( W 5 ) Z 1 W 5 q 5 a ( W 3 ) ⊆ a ( W 1 )? , Z 5 a ( W 2 ) a ( W 4 ) W 2 q 2 q 4 Z 4 , Z 2 , W 4 a ( W 3 ) , W 3 q 3 Pick simulation based a Z 3 17/25

  41. Using non-convex abstractions a ( Z 0 ) q 0 , Z 0 a ( Z 1 ) q 1 q 3 = q 1 ∧ , a ( Z 5 ) Z 1 q 5 a ( Z 3 ) ⊆ a ( Z 1 )? , Z 5 a ( Z 2 ) a ( Z 4 ) q 2 q 4 Z 4 , Z 2 , a ( Z 3 ) , q 3 Pick simulation based a Z 3 17/25

  42. Using non-convex abstractions q 0 , Z 0 q 1 q 3 = q 1 ∧ , Z 1 q 5 a ( Z 3 ) ⊆ a ( Z 1 )? , Z 5 q 2 q 4 Z 4 , Z 2 , , Need to store only concrete semantics q 3 Z 3 17/25

  43. Using non-convex abstractions q 0 , Z 0 q 1 q 3 = q 1 ∧ , Z 1 q 5 Z 3 ⊆ a ( Z 1 )? , Z 5 q 2 q 4 Z 4 , Z 2 , Use Z ⊆ a ( Z ′ ) for termination , q 3 Z 3 17/25

  44. Observation 1 : We can use abstractions without storing them Observation 2 : We can do the inclusion test efficiently 18/25

  45. Coming next... The inclusion test Z ⊆ Closure M ( Z ′ ) 19/25

  46. What is Closure M ? y M ( y ) x 0 M ( x ) 20/25

  47. What is Closure M ? y M ( y ) Z x 0 M ( x ) 20/25

  48. What is Closure M ? y M ( y ) Z x 0 M ( x ) Closure M ( Z ) : set of regions that Z intersects 20/25

  49. Z ⊆ Closure M ( Z ′ ) ? y Z Z ′ M ( y ) x 0 M ( x ) 21/25

  50. Z ⊆ Closure M ( Z ′ ) ? y Closure M ( Z ′ ) Z Z ′ M ( y ) x 0 M ( x ) 21/25

  51. Z ⊆ Closure M ( Z ′ ) ? y Closure M ( Z ′ ) Z Z ′ M ( y ) x 0 M ( x ) 21/25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend