news on safety properties for timed petri nets
play

News on Safety Properties for Timed Petri Nets Patrick Totzke - PowerPoint PPT Presentation

News on Safety Properties for Timed Petri Nets Patrick Totzke Edinburgh 2018-09-24 1 / 15 2 / 15 Networks of Timed Automata - a (finite-state) control program ( S ) - K indistinguishable d -clock Timed Automata ( C ) 2 / 15 Networks of Timed


  1. Coverability via Regions t y 3 1.0 1.2 x 2 p r 0 ≤ x ≤ 5 1.0 5.2 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.1 5.0 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks 5 / 15

  2. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 5 / 15

  3. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing 5 / 15

  4. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing 5 / 15

  5. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing t r,1 s,0 q,5 p,5 r,1 r,1 5 / 15

  6. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing t r,1 s,0 q,5 p,5 r,1 r,1 5 / 15

  7. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing t r,1 s,0 q,5 p,5 r,1 r,1 - long time ticks 5 / 15

  8. Coverability via Regions t y 3 1.1 1.2 x 2 p r 0 ≤ x ≤ 5 1.1 5.3 1.2 1.2 1 < y ≤ 2 0 ≤ z ≤ 0 q y z s 1.2 5.1 0.0 p,1 q,1 p,5 p,1 q,5 - short time ticks ε p,1 q,1 p,5 p,1 q,5 - discrete transition firing t r,1 s,0 q,5 p,5 r,1 r,1 t - long time ticks r,1 p,6 s,0 q,5 r,1 r,1 5 / 15

  9. Coverability via Regions Obs. 1 - region equality is a time-abstract bisimulation - unlike for TA, it has infinite index 6 / 15

  10. Coverability via Regions Obs. 1 - region equality is a time-abstract bisimulation - unlike for TA, it has infinite index Obs. 2 - steps between regions are monotone wrt. region embedding - embedding is a well-quasi-order 6 / 15

  11. Coverability via Regions Obs. 1 - region equality is a time-abstract bisimulation - unlike for TA, it has infinite index Obs. 2 - steps between regions are monotone wrt. region embedding - embedding is a well-quasi-order Together, this yields decidability via the WSTS approach (and completeness for F ω ω ). 6 / 15

  12. Coverability via Regions Obs. 1 - region equality is a time-abstract bisimulation - unlike for TA, it has infinite index Obs. 2 - steps between regions are monotone wrt. region embedding - embedding is a well-quasi-order Together, this yields decidability via the WSTS approach (and completeness for F ω ω ). NB: this fails for d ≥ 2, for several reasons... Indeed we have undecidability in general. 6 / 15

  13. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? 7 / 15

  14. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata 7 / 15

  15. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. 7 / 15

  16. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. − (logspace) reduces to Coverability 7 / 15

  17. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. − (logspace) reduces to Coverability − We show PSPACE-completeness 7 / 15

  18. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. − (logspace) reduces to Coverability − We show PSPACE-completeness 7 / 15

  19. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. − (logspace) reduces to Coverability − We show PSPACE-completeness LB: iterated monotone circuits 7 / 15

  20. Existential Coverability In: A TPN, a marking M , a transition t t ∗ Question: Does there exist ∃ n ∈ N with M · n − − → − − → ? ≈ parametrized safety checking Networks of Timed Automata ≈ Coverability for TPN with continuous firing semantics ´ a la Haddad et al.’17. − (logspace) reduces to Coverability − We show PSPACE-completeness LB: iterated monotone circuits UB: Regions + forward acceleration 7 / 15

  21. Existential Coverability Q: What’s different compared to Coverability? 8 / 15

  22. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, 8 / 15

  23. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, def = P × { 0 , . . . , c max } 1. A Region a sequence of multisets over Σ 8 / 15

  24. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, def = P × { 0 , . . . , c max } 1. A Region a sequence of multisets over Σ sets S ⊆ Σ 8 / 15

  25. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, def = P × { 0 , . . . , c max } 1. A Region a sequence of multisets over Σ sets S ⊆ Σ This already improves the upper bound to F ω 8 / 15

  26. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, def = P × { 0 , . . . , c max } 1. A Region a sequence of multisets over Σ sets S ⊆ Σ This already improves the upper bound to F ω 2. Wlog., the net is non-consuming : • t ⊆ t • for all transitions t . 8 / 15

  27. Existential Coverability Q: What’s different compared to Coverability? A: Token multiplicities do not matter. So, def = P × { 0 , . . . , c max } 1. A Region a sequence of multisets over Σ sets S ⊆ Σ This already improves the upper bound to F ω 2. Wlog., the net is non-consuming : • t ⊆ t • for all transitions t . This means that discrete transition firing is non-decreasing and for every region R - there is a unique maximal region R ′ with R disc − − → ∗ R ′ - R ′ is (Ptime) computable 8 / 15

  28. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A

  29. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A

  30. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A

  31. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A

  32. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A

  33. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A

  34. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A

  35. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A

  36. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A

  37. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A

  38. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  39. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  40. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  41. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  42. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  43. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  44. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  45. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  46. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  47. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  48. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A disc A ε ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A

  49. Existential Coverability: Key Observation When forward exploring zeno behaviour regions “stabilize” A and the limit is expressible as regular expression. disc A ε In this example as ZY ∗ A . ∅ A disc B A ε ∅ B A disc C B A ε ∅ C B A disc D C B A ε ∅ D C B A disc E D C B A Z Y E D C B A 9 / 15

  50. Existential Coverability: Construction - use regular expressions over 2 Σ to represent (limit) regions - careful forward exploration, using intermediate compression steps that add Kleene *s 10 / 15

  51. Forward Exploration 11 / 15

  52. Forward Exploration x 1 x ∗ start 0

  53. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1

  54. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1

  55. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1

  56. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1

  57. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1

  58. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1

  59. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  60. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  61. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  62. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  63. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  64. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1

  65. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate 4 3 2 1 x 4 ( x 4 x 4 ( x 4 3 ) ∗ 0 ) ∗ collapse 4 1

  66. Forward Exploration x 1 x ∗ start 0 x 1 ( x 1 0 ) ∗ saturate 1 ( x 1 x 1 ( x 1 0 + 1) 0 ) ∗ rotate 1 x 2 x 2 ( x 2 0 ) ∗ saturate 2 1 ( x 2 x 2 x 2 ( x 2 0 + 1) 0 ) ∗ rotate 2 1 x 3 x 3 x 3 ( x 3 0 ) ∗ saturate 3 2 1 ( x 3 x 3 x 3 x 3 ( x 3 0 + 1) 0 ) ∗ rotate 3 2 1 x 4 x 4 x 4 x 4 ( x 4 0 ) ∗ saturate ∗ 4 3 2 1 x 4 ( x 4 x 4 ( x 4 3 ) ∗ 0 ) ∗ collapse 4 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend