topics in low energy qcd with strange quarks
play

TOPICS in LOW - ENERGY QCD with STRANGE QUARKS Wolfram Weise T - PowerPoint PPT Presentation

31st Reimei Workshop ASRC Tokai, Japan 18 January 2016 TOPICS in LOW - ENERGY QCD with STRANGE QUARKS Wolfram Weise T echnische U niversitt M nchen PHYSIK DEPARTMENT Symmetry breaking patterns in low - energy QCD : Chiral SU (3) effective


  1. 31st Reimei Workshop ASRC Tokai, Japan 18 January 2016 TOPICS in LOW - ENERGY QCD with STRANGE QUARKS Wolfram Weise T echnische U niversität M ünchen PHYSIK DEPARTMENT Symmetry breaking patterns in low - energy QCD : Chiral SU (3) effective field theory Antikaon - nucleon interactions and status of Λ ( 1405 ) ¯ systems: KNN K − d Kaonic deuterium and reactions In-medium meson spectral function and implications φ Hyperon - nucleon interactions: Chiral EFT and Lattice QCD Strangeness in dense baryonic matter Constraints from two-solar-mass neutron stars 1

  2. Hierarchy of QUARK MASSES in QCD - separation of scales - 1 10 GeV 100 100 MeV 0 t b “ heavy ” quarks “ light ” quarks c u , d s PDG 2014 Basic principles of LOW - ENERGY QCD : Confinement of quarks & gluons in hadrons Chiral Symmetry explicitly broken spontaneously broken by non - zero ( QCD dynamics ) quark masses special role of STRANGE QUARKS 2 own

  3. Spontaneously Broken CHIRAL SYMMETRY SU ( 3 ) L × SU ( 3 ) R NAMBU - GOLDSTONE BOSONS : Pseudoscalar SU(3) meson octet { φ a } = { π , K , ¯ K , η 8 } DECAY CONSTANTS : Chiral limit: f = 86 . 2 MeV a (0) | φ b ( p ) ⟩ = i δ ab p µ f b ⟨ 0 | A µ Order parameter : 4 π f ∼ 1 GeV µ f π = 92 . 21 ± 0 . 16 MeV π axial current f K = 110 . 5 ± 0 . 5 MeV K ν π = − m u + m d G ell-Mann, uu + ¯ m 2 π f 2 ⟨ ¯ dd ⟩ 2 + higher order O akes, corrections R enner K = − m u + m s m 2 K f 2 ⟨ ¯ ss ⟩ uu + ¯ relations 2 3

  4. Spontaneously Broken CHIRAL SYMMETRY GOLDSTONE ’s Theorem : Massless Nambu-Goldstone bosons do not interact in the limit of zero momentum (long-wavelength limit) S - wave interactions of NG bosons T ∼ E scattering p m 2 + k 2 E = amplitude f 2 explicit chiral symmetry breaking meson decay constant Tomozawa - Weinberg order parameter of spontaneous low-energy theorem chiral symmetry breaking 4

  5. CHIRAL SU ( 3 ) EFFECTIVE FIELD THEORY ordered hierarchy of driving interactions pseudoscalar [8] meson octet Leading order terms ( W einberg & T omozawa) baryon [8] octet ¯ Examples: (S = -1) and (S = +1) threshold (s wave) amplitudes : KN KN T ( K + p ) thr = 2 T ( K + n ) thr = − m K repulsive f 2 T ( K − p ) thr = 2 T ( K − n ) thr = m K attractive f 2 + + (d) next-to-leading order ( NLO ) O ( p 2 ) input : several low-energy constants 5

  6. PART I Antikaon - Nucleon Interactions and the K (1405) - brief status report - 6

  7. Low - Energy Interactions KN Framework: Chiral SU (3) Effective Field Theory . . . but : Chiral Perturbation Theory NOT applicable: N. Kaiser, P . Siegel, W. W. (1995) E. Oset, A. Ramos (1998) Λ (1405) resonance 27 MeV below threshold K − p * (1405) * (1385) L Non-perturbative S 1500 Coupled Channels ** (1520) L approach based on √ s [ MeV ] _ Chiral SU ( 3 ) Dynamics Lp Sp KN ` KN th Leading s-wave I = 0 meson-baryon interactions (Weinberg-Tomozawa) orld of antikaon-nucleon scattering ¯ Σ K N π π Σ ¯ KN π Σ ¯ ¯ K N Σ K π N channel coupling Recent Review : T. Hyodo, D. Jido Prog. Part. Nucl. Phys. 67 (2012) 55 7

  8. CONSTRAINTS from SIDDHARTA Strong interaction Kaonic hydrogen 1s energy shift and width precision data Hydrogen EM value K-p K � spectrum Kaonic hydrogen K � K � higher SIDDHARTA KC54 KC65 Ti K � KO65 Ti K � KC75 KN65 KO76 KAl87 Cu M. Bazzi et al. (SIDDHARTA collaboration) Phys. Lett. B 704 (2011) 113 ∆ E = 283 ± 36 ( stat ) ± 6 ( syst ) eV − ε 1s = Γ = 541 ± 89 ( stat ) ± 22 ( syst ) eV 8

  9. SCATTERING AMPLITUDE from K − p CHIRAL SU (3) COUPLED CHANNELS DYNAMICS Y. Ikeda, T. Hyodo, W. W. f ( K − p ) = 1 � � KN ( I = 0 ) + f ¯ KN ( I = 1 ) f ¯ PLB 706 (2011) 63 2 NPA881 (2012) 98 KN ( I = 0 ) quasibound state embedded in the π Σ continuum : ¯ Λ ( 1405 ) Prototype example for emergence of resonant structure close to a threshold 1.5 2.5 [ fm ] [ fm ] Im f ( K − p → K − p ) 1 2 Re f ( K − p → K − p ) 0.5 1.5 Re a ( K − p ) Λ ( 1405 ) 0 1 incl. SIDDHARTA -0.5 0.5 constraints Im a ( K − p ) -1 0 1340 1360 1380 1400 1420 1440 1340 1360 1380 1400 1420 1440 √ s [ MeV ] √ s [ MeV ] E (MeV) E (MeV) Complex scattering length (including Coulomb corrections) Im a ( K − p ) = 0 . 81 ± 0 . 15 fm Re a ( K − p ) = − 0 . 65 ± 0 . 10 fm 9

  10. CHIRAL SU ( 3 ) COUPLED CHANNELS DYNAMICS Predicted antikaon - neutron amplitudes at and below threshold Y. Ikeda, T. Hyodo, W. Weise : Phys. Lett. B 706 (2011) 63 , Nucl. Phys. A 881 (2012) 98 0.8 0.8 real part imaginary part [ fm ] Re f ( K − n → K − n ) [ fm ] Im f ( K − n → K − n ) 0.6 TW 0.6 WT TW + Born 0.4 WTB NLO NLO 0.2 0.4 TW 0.0 WT TW + Born 0.2 WTB NLO -0.2 NLO -0.4 0.0 1360 1380 1400 1420 1440 1360 1380 1400 1420 1440 √ s [ MeV ] √ s [ MeV ] a ( K − n ) = 0 . 57 + 0 . 04 − 0 . 21 + i 0 . 72 + 0 . 26 − 0 . 41 fm Needed : accurate constraints from antikaon - deuteron threshold measurements complete information for both isospin I = 0 and channels ¯ I = 1 KN plus potentially important information about K - NN absorption 10

  11. ANTIKAON - DEUTERON SCATTERING LENGTH Calculations using SIDDHARTA - constrained input Im a ( K − d ) [ fm ] excluded Looking Three-body forward to: Faddeev calculation multiple scattering separable “chiral” using I keda H yodo W KAONIC amplitudes ( c ) scattering lengths DEUTERIUM ( b ) N.V. Shevchenko measurements S. Ohnishi, T. Hyodo, NPA 890-891 (2012) 50 Y. Ikeda, W. W. (2014) ( a ) SIDDHARTA2 and Non-relativistic J-PARC E57 effective field theory excluded M. Döring, U.-G. Meißner Phys. Lett. B 704 (2011) 663 Re a ( K − d ) [ fm ] 11

  12. Λ ( 1405 ) : RECENT NEWS γ p → K + π − Σ + @ CLAS / JLab ) (1405) Λ data 2 counts /(5 MeV/c 1000 * (1520) + Λ K Σ * 0 (1385) Y (1670) Σ K. Moriya et al. (CLAS collaboration) 500 Phys. Rev. D88 (2013) 045201 (a) 0 1.35 1.4 1.45 1.5 1.55 + - 2 M( ) (GeV/c ) Σ π Detailed analysis of distribution Σ + π − 1.8 40 ) 2 and polarization confirms Σ + ) (GeV/c 1.7 30 J P = 1 1.6 − of Λ ( 1405 ) 20 2 1.5 - � + � 10 (b) K. Moriya et al. (CLAS collaboration) 1.4 M( � Phys. Rev. Lett. 112 (2014) 068103 � 1.3 0 1 1.5 + - 2 M(K ) (GeV/c ) � 12 �

  13. Recent Structure of Λ ( 1405 ) from Lattice QCD � developments: | Λ ∗ ⟩ = a | uds ⟩ + b | ( udu )( ¯ us ) ⟩ + . . . � | � Λ ∗ | n � | 2 | � | � Λ ∗ | n � | 2 constituent � 8 0.8 0.8 quark ¯ dominated KN 0.6 quasi 0.6 qqq molecular � “heavier” quarks ¯ 0.4 0.4 KN m π ≃ 0 . 6 GeV structure π Σ π Σ Σ ¯ ¯ KN 0.2 KN 0.2 “light” quarks qqq m π ≃ 0 . 3 GeV 570 570 ] [ MeV ] m m 296 J.M.M. Hall et al. ; Phys. Rev. Lett. 114 (2015) 132002 Note: qualitative structural change depending on quark mass (interplay of spontaneous & explicit chiral symmetry breaking) 13

  14. Structure of Λ ( 1405 ) from Lattice QCD (contd.) Strangeness magnetic form factor of Λ ( 1405 ) Quasi-molecular state: s-quark localised in Kbar subcluster strange quark does not contribute to magnetic structure � 1.0 light sector strange sector � 0.8 J.M.M. Hall et al. � Phys. Rev. Lett. + 1 114 (2015) 132002 G M @ Μ N D 0.6 0 − 2 0.4 � 0.2 0.0 0.0 0.1 0.2 0.3 0.4 2 @ GeV ê c 2 D m Π 14

  15. The TWO POLES scenario Characteristic feature of Chiral SU (3) Dynamics : Energy dependent driving interactions D. Jido et al. � !"#$%& ¯ KN π Σ Nucl. Phys. A723 (2003) 205 #(' T. Hyodo, W. W. Phys. Rev. C 77 (2008) 03524 #(% +,+&#-.'"(% #(" T. Hyodo, D. Jido #(' Prog. Part. Nucl. Phys. 67 (2012) 55 #($ #(% d o m i n a n t l y #(" dominantly &'# Σ #($ π ¯ &%# KN &"# )*#$%&#'"(% !"%# !""# &$# !"$# !"## !"#$%&#'"(% Pole positions from chiral SU ( 3 ) coupled - channels calculation T. Hyodo, D. Jido, arXiv:1104.4474 with SIDDHARTA threshold constraints: E 2 = 1381 ± 15 MeV E 1 = 1424 ± 15 MeV Y. Ikeda, T. Hyodo, W. W. : Nucl. Phys. A 881 (2012) 98 Γ 2 = 162 ± 15 MeV Γ 1 = 52 ± 10 MeV Note: phenomenological potential approach is qualitatively different: Y. Akaishi, T. Yamazaki energy- independent interaction, single pole Λ ( 1405 ) 15

  16. Scenarios : TWO - POLES ENERGY - DEPENDENT vs. SINGLE - POLE ENERGY - INDEPENDENT �� � Three-body coupled channels (Faddeev) calculations Neutron energy spectrum mass distributions → π Σ (J-PARC E31) E-dependent - two poles E-independent - one pole K − d → n π − Σ + (a) E-dep. d σ /dM πΣ ( µ b/MeV) p lab (b) E-indep. = 1 GeV 0.3 0.3 K π + Σ - π - Σ + π 0 Σ 0 0.2 0.2 0.1 0.1 K − d → n π + Σ − 0 0 K − d → n π 0 Σ 0 1350 1400 1450 1500 1350 1400 1450 1500 M πΣ (MeV) M πΣ (MeV) S. Ohnishi, Y. Ikeda, T. Hyodo, W. W. : arXiv:1512.00123, Phys. Rev. C (2016) 16

  17. Present status of K − d → n π Σ experiment 𝑒 𝐿 − , 𝑜 𝑌 𝜌 ± Σ ∓ E 31 @ J-PARC 𝜌 + Σ − /𝜌 − Σ + 𝑒 𝐿 − , 𝑜 𝑌 𝜌 ± Σ ∓ S Neutron detected in forward direction s resol . ~ 10 MeV 𝐿 − 𝑞 Focus on: possible structure around missing mass 1.42 GeV ? separation of and modes π + Σ − π − Σ + spectra above threshold KN 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend