topic 38
play

Topic #38 Transfer function to state-space Reference textbook : - PowerPoint PPT Presentation

ME 779 Control Systems Topic #38 Transfer function to state-space Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1 Transfer function to state-space Phase-variable and controller canonical forms


  1. ME 779 Control Systems Topic #38 Transfer function to state-space Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1

  2. Transfer function to state-space Phase-variable and controller canonical forms         m m 1 m 2 K s b s b s b s b ( ) Y s    m 1 m 2 1 0       n n 1 n 2 U s ( ) s a s a s a s a   n 1 n 2 1 0 2

  3. Transfer function to state-space Phase-variable and controller canonical forms Z s ( ) K        n n 1 n 2 U s ( ) s a s a s a s a   n 1 n 2 1 0 Y s ( )        m m 1 m 2 s b s b s b s b   m 1 m 2 1 0 Z s ( ) 3

  4. Transfer function to state-space Phase-variable and controller canonical forms          1 2 n n n s a s a s a s a Z s ( ) KU s ( )   n 1 n 2 1 0     n n 1 n 2 d z d z d z dz        ( ) a a a a z Ku t     n 1 n 2 1 0 n n 1 n 2   dt dt dt dt 4

  5. Transfer function to state-space Phase variable form dz    x x x z 1 2 dt 1 dz 2 d z    x x x 2 2 3 2 dt dt 3 2 d z d z    x x x 3 4 3 dt 3 2 dt  n 1 d z    n 1 x x d z    n 1 n n 1 dt x  n n 1 dt n d z  x n n dt 5

  6. Transfer function to state-space Phase variable form     n n 1 n 2 d z d z d z dz        Ku t ( ) a a a a z     n 1 n 2 1 0 n n 1 n 2   dt dt dt dt        Ku t ( ) a x a x a x a x    n 1 n n 2 n 1 1 2 0 1 6

  7. Transfer function to state-space Phase variable form  x x 1 2  x x 2 3  x x 3 4  x x  n 1 n        ( ) x Ku t a x a x a x a x    n n 1 n n 2 n 1 1 2 0 1 7

  8. Transfer function to state-space Phase variable form         x 0 1 0 0 x 0 1 1         x 0 0 1 0 x 0         2 2                 x 0 u t ( ) 3         x 0 0 0 1          n 1                     x a a a a x K  0 1 2 1 n n n Upper companion matrix 8

  9. Transfer function to state-space Phase variable form     m m 1 m 2 d z d z d z dz        y t ( ) b b b b z     m 1 m 2 1 0 m m 1 m 2   dt dt dt dt        y t ( ) x b x b x b x b x     m 1 m 1 m m 2 m 1 1 2 0 1 9

  10. Transfer function to state-space Phase variable form   x 1   x   2   x 3            y t ( ) b b b b 1 0 0 x   0 1 2 m 1 m 1   x   m     x    n 1     x n 10

  11. Transfer function to state-space Phase variable form 11

  12. Transfer function to state-space EXAMPLE Phase variable form Obtain the phase-variable representation of the following transfer function     2 20 s 2 s 5 Y s ( )      4 3 2 U s ( ) s 3 s 5 s 6 s 7 12

  13. Transfer function to state-space EXAMPLE Phase variable form         x 0 1 0 0 x 0 1 1               x 0 0 1 0 x 0     2 2       u t ( )   x 0 0 0 1 x 0       3 3                     x 7 6 5 3 x 20 4 4   x 1     x  2   y t ( ) [5 2 1 0] x   3     x 4 13

  14. Transfer function to state-space Controller canonical form  n 1 d z  n x d z          1 x Ku t ( ) a x a x a x a x n 1 dt    1 n 1 1 n 2 2 1 n 1 0 n n dt n  n 1 d z d z    x x x  2 1 1 n 2 dt n dt 2 d z   x x dz   n 1 n 2 2  dt x  n 1 dt dz   x x  n n 1  dt x z n 14

  15. Transfer function to state-space Controller canonical form             x x a a a a K    1 n 1 n 2 n 3 0 1         x 1 0 0 0 x 0         2 2                 x 0 u t ( ) 3         x 0 0 1 0 0          n 1                 x x 0 0 0 1 0 0 n n        y t ( ) x b x b x b x b x         n m m 1 n m 1 m 2 n m 2 1 n 1 0 n 15

  16. Transfer function to state-space Controller canonical form   x 1   x   2     x     n m 1     x     n m   y t ( ) 0 0 0 1 b b b b   m 1 m 2 1 0 x     n m 1   x     n m 2     x    n 1     x n 16

  17. Transfer function to state-space Controller canonical form 17

  18. Transfer function to state-space EXAMPLE Controller canonical form Obtain the controller canonical representation of the following transfer function     2 20 s 2 s 5 Y s ( )      4 3 2 U s ( ) s 3 s 5 s 6 s 7 18

  19. Transfer function to state-space EXAMPLE Controller canonical form             x x 3 5 6 7 20 1 1               x 1 0 0 0 x 0     2 2       u t ( )   x 0 1 0 0 x 0       3 3                 x 0 0 1 0 x 0 4 4   x 1     x  2   y t ( ) [0 1 2 5] x   3     x 4 19

  20. Transfer function to state-space Observer canonical form   b b 1 b     m 1 0  1  K       n m n m 1 n 1 n Y s ( ) s s s s  a a a a U s ( )       n 1 n 2 1 0 1  2 n 1 n s s s s 20

  21. Transfer function to state-space Observer canonical form   a a a a         n 1 n 2 1 o ( ) 1 Y s    2 n 1 n s s s s   1 b b b        m 1 1 0 KU s ( )       n m n m 1 n 1 n s s s s 21

  22. Transfer function to state-space Observer canonical form 1 1         Y s ( ) b KU s ( ) a Y s ( ) b KU s ( ) a Y s ( )  0 0 1 1 n n 1 s s a a 1          m 1 n 1 KU s ( ) a Y s ( ) Y s ( ) Y s ( )    m 1 n m n m s s s 22

  23. Transfer function to state-space Observer canonical form 23

  24. Transfer function to state-space Observer canonical form    x a x x  1 n 1 1 2    x a x x  2 n 2 1 3     x a x x u t K ( )    n m m 1 n m 1     x a x x b u t K ( )  n 1 1 1 n 1    x a x b u t K ( ) n 0 1 0 24

  25. Transfer function to state-space Observer canonical form          1 0 0 0 0 0 0 x a x  1 n 1 1          x a 0 1 0 0 0 0 x 0          2 n 2 2         0 0 0 0 0 0                  x a 0 0 0 1 0 0 x 1 K u t ( )     n m m n m         0 0 0 0 0                  x a 0 0 0 0 0 1 x b   1 1 1 1 n n                  x a 0 0 0 0 0 0 x b n 0 n 0 25

  26. Transfer function to state-space Observer canonical form   x 1   x   2          y t ( ) 1 0 0 0 x    n 2   x    n 1     x n 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend