tokyo metropolitan university k aoki and d jido
play

Tokyo Metropolitan University K.Aoki and D.Jido 2016.12.01,02 - PowerPoint PPT Presentation

Tokyo Metropolitan University K.Aoki and D.Jido 2016.12.01,02 ELPH C015 1. INTRODUCTION Nucleus-hadron systems & par4al restora4on of


  1. Tokyo Metropolitan University K.Aoki and D.Jido 2016.12.01,02 ELPH 研究会 C015 マルチフレーバーで探るエキゾチックハドロンとハドロン多体系の物理

  2. 1. INTRODUCTION

  3. Nucleus-hadron systems & par4al restora4on of chiral symmetry ★ Purpose of study. To prove spontaneous breaking of chiral symmetry from experimental fact. Prove reducKon of magnitude of quark condensate by restoring broken chiral symmetry . Chiral symmetry is parKally restored in finite density nuclear medium. We implant hadron into nucleus (hadron-nucleus system). Hadrons change their properKes in nuclear medium. ー In-medium hadron-nucleon interacKons vs. In-vacuum hadron-nucleon interacKons. ー reducKon of magnitude of quark condensate.

  4. present status of par4al restora4on of chiral symmetry ●Deeply bound pionic atoms. Friedman et al. PRL93, ●π meson-nucleus elasKc scaTering. 122302 (2004) + theoreKcal consideraKon K.Suzuki et al. PRL92, 072302 (2004) chiral symmetry is restored about 30%. wavefuncKon renormalizaKon ● One of the higher order correcKon beyond tρ approximaKon ●In-medium self-energy has strong energy-dependence wavefuncKon renormalizaKon has large contribuKon For NG boson low-energy QCD effecKve theory (chiral perturbaKon theory) NG bosons are wriTen as their energy expansion. ️ NG boson-nucleon interacKon has strong energy-dependence. wavefuncKon renormalizaKon is important as in-medium effects Jido,Hatsuda,Kunihiro, Kolomeitsev,Kaiser,Weise, Jido,Hatsuda,Kunihiro, PRD63,011901(2001) PRL90 092501(2003) PLB670,109 (2008)

  5. connecKon of wavefuncKon renormalizaKon & Jido,Hatsuda,Kunihiro, parKal restoraKon of chiral symmetry PRD63,011901(2001) V(π, σ) low energy QCD effecKve theory [chiral perturbaKon theory] consistent with original chiral π symmetry ●angular direcKon: NG boson (pion) σ ●radial direcKon: σ mode m σ ●angular variable = dimensionless ●pion field has energy dimension ●F has energy dimension  � i ~ ⇡ · ~ ⌧ = pion decay constant U = exp =quark condensate. F renormalizaKon of parKal restoraKon of F is change. pion field. chiral symmetry.

  6. Further studies. Does parKal restoraKon of chiral symmetry systemaKcally occur in other than pion-nucleus systems? OUR STUDY K + meson – nucleus system. ️ K + N amplitude. ・ elementary process of K + -nucleus interacKons. ️ K + self-energy in nuclear medium. ・ Taking into account all possible medium effect. -nucleon Fermi moKon -mass modificaKon -vertex correcKon - ️ wavefuncKon renormalizaKon Our goal ・ EvaluaKng reducKon of magnitude of quark condensate from in-medium K + N interacKon

  7. Further studies. Does parKal restoraKon of chiral symmetry systemaKcally occur in other than pion-nucleus systems? OUR STUDY K + meson – nucleus system. ️ ✔ ️ K + N amplitude. ・ elementary process of K + -nucleus interacKons. ️ K + self-energy in nuclear medium. ・ Taking into account all possible medium effect. -nucleon Fermi moKon -mass modificaKon ・ large contribu4on as one of the -vertex correcKon in-medium effect. - ️ ✔ ️ wavefuncKon renormalizaKon ・ rela4on to par4al restora4on of chiral symmetry. Our goal ・ EvaluaKng reducKon of magnitude of quark condensate from in-medium K + N interacKon

  8. 2. Overview of K + - nucleus system.

  9. K + - nucleon interac4on ★ K + N interacKon is repulsive and relaKvely weak. ー mean free path in nuclear medium is as large as 5 fm. ー comparable to typical nucleus size. Single step K + N interacKon should be dominant. [MulKple scaTering could be negligible.] K + is considered to be clean hadronic prove. ★ K + N interacKon has S= +1. ー There is no strong resonance. In contrast to S=−1 K bar N interacKon. ー Strong aTracKve interacKon and quasi bound state Λ(1405) ●Only K + exists in nuclear medium. ●It is relaKvely easy to consider in-medium effect to K + .

  10. K + - nucleus interac4on. ★ ExpectaKon from K + N interacKon. Single step K + N interacKon should be dominant. [MulKple scaTering could be negligible.] σ ( K + A ) ' A σ ( K + N ) p lab < 800MeV / c ★ Experimental data…total cross secKon per nucleon. linear density approximaKon σ ( K + 12 C ) / 12 is not valid. > 1 1.2 at p lab =450 MeV/c σ ( K + d ) / 2 D.V.Bugg, et al Phys.Rev. 168(1968) 1466. ★ OpKcal potenKal… linear density (low density) approximaKon is not valid. 2 ω K + V opt = T ( K + N ) ρ

  11. のとき 積分を実行すると次のような方程式が得られる のフィット 異なるポテンシャルを用いた 表 表 なる と 結合の強さがある程度まで大きくなるとクォークの質量は の解を持つ E.Friedman,A.Gal Table 1 raKo of K + - nucleus opKcal potenKal. Phys.Rept. 452(2007) 89 t ρ t ρ P LAB [MeV/c] Re b 0 [fm] Im b 0 [fm] X ≡ | t free ρ | | arg( t free ρ ) | [deg] V OP T experiment 488 -0.203(26) 0.172(7) 1.14 0.33 t ρ expectaKon -0.178 0.153 t free ρ 531 -0.196(39) 0.202(9) 1.17 1.27 t ρ -0.172 0.170 t free ρ 656 -0.220(50) 0.262(12) 1.27 2.31 t ρ -0.165 0.213 t free ρ 714 -0.242(53) 0.285(15) 1.34 5.15 t ρ -0.161 0.228 t free ρ tρ : Fits to K + -nucleus t free ρ: In-vacuum K + N interacKon (expectaKon). scaTering data (experiment). ・ |t free ρ| is increased by 14 – 34 % by in-medium effects. ・ ImX is small compared to ReX. | t ρ | = X | t free ρ | in-medium effects

  12. 3. Method

  13. Outline ️ ✔ ️ K + N amplitude. ・ elementary process of K + -nucleus interacKons. ️ K + self-energy in nuclear medium. ・ Taking into account all possible medium effect. -nucleon Fermi moKon -mass modificaKon -vertex correcKon - ️ ✔ ️ wavefuncKon renormalizaKon

  14. K + N amplitude(1) K + p → K + p K + n → K + n Using the 3-flavor chiral perturbaKon theory up to NLO. Weinberg-Tomozawa Born (crossed) NLO f K D = 0 . 80 , F = 0 . 46 χ 2 fits to the exparimental data. I=1 (2 parameters) & I=0 (2 parameters)

  15. K + N amplitude(2) ●Tree-level calculaKon…Amplitude is real. We want to calculate the imaginary part. ●We want to reproduce more wide energy range data. ★ UnitalizaKon Summing up higher order diagrams to saKsfy unitarity of amplitude. = + + + ・・・ New parameter is appearing. SubtracKon constant a .

  16. K + N amplitude(3) χ 2 fits to the experimental data. I=1 DifferenKal cross secKon P LAB = 726MeV / c (many data) I=0 Total cross secKon P LAB = 350 ∼ 800MeV / c (less data) Isospin0 Isospin1 common parameter ・・・ subtracKon constant a

  17. Outline ️ ✔ ️ K + N amplitude. ・ elementary process of K + -nucleus interacKons. ️ K + self-energy in nuclear medium. ・ Taking into account all possible medium effect. -nucleon Fermi moKon -mass modificaKon -vertex correcKon - ️ ✔ ️ wavefuncKon renormalizaKon

  18. wavefuncKon renormalizaKon ●K + self-energy describe interacKon with nuclear medium. Σ = T ( K + N ) ρ ●WavefuncKon renormalizaKon factor. � Z ' 1 + ∂ Σ � � ∂ E 2 � E 2 = ω 2 K + 2 ω K + V opt = ZT ( K + N ) ρ

  19. 4. Results

  20. I=1 TOTAL CROSS SECTION 16 14 TOTAL CROSS SECTION [mb] 12 10 8 6 ChPT Bugg 1968 4 Bowen 1970 Adams 1971 Bowen 1973 2 Carroll 1973 Cameron 1974 0 0 100 200 300 400 500 600 700 800 P LAB [MeV/c] ●DifferenKal cross secKon at P LAB =726 MeV/c. b I=1 =6.18×10 -4 d I=1 =3.00×10 -4 [MeV -1 ] ●χ2/N =0.68 a =-1.224

  21. I=0 TOTAL CROSS SECTION 25 ChPT Bowen 1970 Bowen 1973 TOTAL CROSS SECTION [mb] Carroll 1973 20 15 10 5 0 0 100 200 300 400 500 600 700 800 P LAB [MeV/c] ●Total cross secKon P lab = 350 ー 800 MeV/c b I=0 =4.13×10 -4 d I=0 =-9.80×10 -4 [MeV -1 ] ●χ2/N =6.85 a=-1.224

  22. のフィット 積分を実行すると次のような方程式が得られる 異なるポテンシャルを用いた 表 表 なる と 結合の強さがある程度まで大きくなるとクォークの質量は の解を持つ のとき � Z ' 1 + ∂ Σ Table 2 wavefuncKon renormalizaKon factor Z . � � ∂ E 2 � E 2 = ω 2 [evaluated at saturaKon density] K + Weinberg-Tomozawa term evaluated at threshold: |Z| = 1.08 t ρ t ρ P LAB [MeV/c] | Z | | arg(Z) | [deg] X ≡ | t free ρ | | arg( t free ρ ) | [deg] 488.0 1.11 3.87 1.14 0.33 531.0 1.09 1.68 1.17 1.27 656.0 1.04 0.04 1.27 2.31 714.0 1.03 0.11 1.34 5.15 [our calculaKon] [literature values] | t ρ | = | Z || t free ρ | | t ρ | = X | t free ρ | ・ ImZ is small compared to ReZ. ・ At low-energy |t free ρ| is increased by about 10 % only by wavefuncKon renormalizaKon.

  23. 5. Summary & Outlook

  24. Summary ● We have constructed K + N elasKc scaTering amplitude based on chiral perturbaKon theory. ● We have carried out unitalizaKon. ● To determine low-energy constants and subtracKon constant , we have carried out χ 2 fit. ●We have calculated wavefuncKon renormalizaKon as one of the in-medium effect. ●Only wavefuncKon renormalizaKon, |t free ρ| is increased by 3- 11 %.

  25. Outlook Whether wavefuncKon renormalizaKon is large compared to other in-medium effects or not. more precise calculaKon of K + self-energy. Taking into account other in-medium effects. ー Fermi moKon ー mass modificaKon ー vertex correcKon 3-flavor in-medium chiral perturbaKon theory.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend