10
play

10 Superelements and Global-Local Analysis IFEM Ch 10 Slide 1 - PDF document

Introduction to FEM 10 Superelements and Global-Local Analysis IFEM Ch 10 Slide 1 Introduction to FEM Superelements Two extremes Macroelements "bottom up" Substructures "top down" IFEM Ch 10 Slide 2 Introduction


  1. Introduction to FEM 10 Superelements and Global-Local Analysis IFEM Ch 10 – Slide 1

  2. Introduction to FEM Superelements Two extremes Macroelements "bottom up" Substructures "top down" IFEM Ch 10 – Slide 2

  3. Introduction to FEM Substructuring was Invented in the Aerospace Industry (early 1960s) S4 S6 S2 S5 S1 S3 First level substructuring IFEM Ch 10 – Slide 3

  4. Introduction to FEM Substructures (cont'd) level two substructure (wing section) level one substructure (wing) individual element IFEM Ch 10 – Slide 4

  5. Introduction to FEM Multilevel FEM Substructuring was Invented in the Norwegian Offshore Industry in the mid/late 60s IFEM Ch 10 – Slide 5

  6. Introduction to FEM Among Other Things, to Take Advantage of Repetition From DNV (Det Norske Veritas) web-posted brochure. Permission requested for inclusion in book proper. IFEM Ch 10 – Slide 6

  7. Introduction to FEM Multistage Rockets Naturally Decompose into Substructures Short stack Apollo/Saturn lunar COMMAND MODULE rocket SERVICE MODULE ADAPTER LUNAR MODULE INSTRUMENT UNIT THIRD STAGE SIV-B IFEM Ch 10 – Slide 7

  8. Introduction to FEM Static Condensation A universal way to eliminate internal DOFs b b i i b b b b b b b b Substructure Macroelement IFEM Ch 10 – Slide 8

  9. Introduction to FEM Static Condensation by Matrix Algebra K bb K bi u b f b = Partition K ib K ii u i f i Solve for interior displacements from 2nd matrix equation u i = K −1 f i − K ib u b ( ) ii replace into first matrix equation ~ ~ Condensed K bb u b = f b stiffness equations ~ K bb = K bb − K bi K −1 where ii K ib ~ f b = f b − K bi K −1 ii f i IFEM Ch 10 – Slide 9

  10. Introduction to FEM Static Condensation by Symmetric Gauss Elimination − 2 − 1 − 3 6 u 1 3       − 2 − 2 − 1 5 u 2 6 8 is called  =       − 1 − 2 − 4 7 u 3 4 the pivot      − 3 − 1 − 4 8 u 4 0 Task: eliminate u 4 ( − 3) × ( − 3) ( − 1) × ( − 3) ( − 4) × ( − 3) 0 × ( − 3) 6 − − 2 − − 1 − 3 −     u 1   8 8 8 8  = ( − 3) × ( − 1) ( − 1) × ( − 1) ( − 4) × ( − 1) 0 × ( − 1) − 2 − 5 − − 2 − 6 − u 2      8 8 8 8     ( − 3) × ( − 4) ( − 1) × ( − 4) ( − 4) × ( − 4) 0 × ( − 4) − 1 − − 2 − 7 − 4 − u 3 8 8 8 8 − 19 − 5 39 u 1 3       8 8 2  = Condensed − 19 − 5 39 6 u 2      8 8 2 equations − 5 − 5 5 u 3 4 2 2 IFEM Ch 10 – Slide 10

  11. Introduction to FEM Static Condensation by Symmetric Gauss Elimination (cont'd) − 19 − 5 39 u 1 3       8 8 2  = − 19 − 5 39 u 2 6      8 8 2 − 5 − 5 5 u 3 4 2 2 Now eliminate u 3 ( − 5/2 ) � � u 1 � 3 − ( − 5/2 ) ( − 5/2 ) ( − 5/2 ) 4 × ( − 5/2 ) 8 − − 19 8 − 39 × × � � � 5 5 − 5 ( − 5/2 ) ( − 5/2 ) ( − 5/2 ) × ( − 5/2 ) 4 × ( − 5/2 ) − 19 8 − 8 − 6 − u 2 39 × 5 5 5 � 5 � � u 1 − 29 29 � � � Condensed = 8 8 − 29 29 equations u 2 8 8 8 IFEM Ch 10 – Slide 11

  12. Introduction to FEM Static Condensation Module (posted on web site) CondenseLastFreedom[K_,f_]:=Module[{pivot,c,Kc,fc, n=Length[K]}, If [n<=1,Return[{K,f}]]; Kc=Table[0,{n-1},{n-1}]; fc=Table[0,{n-1}]; pivot=K[[n,n]]; If [pivot==0, Print["CondenseLastFreedom:", " Singular Matrix"]; Return[{K,f}]]; For [i=1,i<=n-1,i++, c=K[[i,n]]/pivot; fc[[i]]=f[[i]]-c*f[[n]]; For [j=1,j<=i,j++, Kc[[j,i]]=Kc[[i,j]]=K[[i,j]]-c*K[[n,j]] ]; ]; Return[Simplify[{Kc,fc}]] ]; ClearAll[K,f]; K={{6,-2,-1,-3},{ -2,5,-2,-1},{ -1,-2,7,-4},{-3,-1,-4,8}}; f={3,6,4,0}; Print["Before condensation:"," K=",K//MatrixForm," f=",f//MatrixForm]; {K,f}=CondenseLastFreedom[K,f];Print["Upon condensing DOF 4:", " K=",K//MatrixForm," f=",f//MatrixForm]; {K,f}=CondenseLastFreedom[K,f];Print["Upon condensing DOF 3:", " K=",K//MatrixForm," f=",f//MatrixForm]; IFEM Ch 10 – Slide 12

  13. Introduction to FEM Static Condensation Module Results on Notes Example � � � � 6 � 2 � 1 � 3 3 � � � � � � � � � � � � � � � � � � � � � � 2 5 � 2 � 1 � � 6 � � � � � � � � � Before condensation: K � f � � � � � � � � � � � � � � 1 � 2 7 � 4 4 � � � � � � � � � � � � � 3 � 1 � 4 8 0 � � 39 � 19 � 5 � � � � ����� � ����� � ��� � � � � � 3 � 8 8 2 � � � � � � � � � � � � � � � � � 19 39 � 5 � � � Upon condensing DOF 4: K � � � f � � 6 � � � � ����� � ����� � ��� � � � 8 8 2 � � � � � � � 4 � 5 � 5 � � 5 ��� � ��� � 2 2 � � 29 � 29 � � � � ����� � ����� � � f � � 5 � � 8 8 8 � � � Upon condensing DOF 3: K � � � � � 29 29 � � ����� � ����� � 8 8 IFEM Ch 10 – Slide 13

  14. Introduction to FEM Global-Local Analysis (an instance of Multiscale Analysis) Example structure: panel with small holes IFEM Ch 10 – Slide 14

  15. Introduction to FEM Standard (one-stage) FEM Analysis finer meshes coarse mesh IFEM Ch 10 – Slide 15

  16. Introduction to FEM Global-Local (two-stage) FEM Analysis Global analysis with a coarse mesh, ignoring holes, followed by local analysis of the vicinity of the holes with finer meshes (next slide) IFEM Ch 10 – Slide 16

  17. Introduction to FEM Local Analysis BCs of displacement or (better) of force type using results extracted from the global analysis IFEM Ch 10 – Slide 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend