doping liquid xenon with light elements
play

Doping liquid xenon with light elements Hugh Lippincott, Fermilab - PowerPoint PPT Presentation

FERMILAB-SLIDES-18-140-AE -E Doping liquid xenon with light elements Hugh Lippincott, Fermilab COFI November 29, 2018 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S.


  1. FERMILAB-SLIDES-18-140-AE -E Doping liquid xenon with light elements Hugh Lippincott, Fermilab COFI November 29, 2018 This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 1

  2. SuperCDMS Soudan Low Threshold XENON 10 S2 (2013) 10 � 39 10 � 3 CDMS-II Ge Low Threshold (2011) PICO250-C3F8 CDMSlite CoGeNT (2012) 10 � 40 10 � 4 (2013) CDMS Si (2013) SIMPLE (2012) 10 � 41 10 � 5 WIMP � nucleon cross section � cm 2 � COUPP (2012) WIMP � nucleon cross section � pb � DAMA ) 2 1 0 2 ( I I I - N I 10 � 42 C L 10 � 6 CDMS II Ge (2009) P E R Z E S S S T u Xenon100 (2012) p e EDELWEISS (2011) r C 10 � 43 D 10 � 7 M S S N ) 3 O 1 L N A B 0 SuperCDMS Soudan 2 E U ( X U 0 L 5 T e d 10 � 44 10 � 8 R I N S i k r a I 3 D F C O C - 0 5 7 Be y 2 C A T a T E O O H d - C S 0 E R T R I 0 P E N 3 I SuperCDMS SNOLAB X Neutrinos U N 8 B L 10 � 45 10 � 9 G T 1 n o Neutrinos DEAP3600 n e 2 X G e d S i k r a D LZ 10 � 46 10 � 10 10 � 47 10 � 11 G I N R E T T A C Atmospheric and DSNB Neutrinos T S 10 � 48 RE N 10 � 12 H E O C O I N R U T E N 10 � 49 10 � 13 10 � 50 10 � 14 1 10 100 1000 10 4 WIMP Mass � GeV � c 2 � • Limited at low mass by detector threshold • Limited at high mass by density • Eventually limited by neutrinos

  3. So where are we? (LZ edition) Ge, NaI no discrimination C. Amole et al ., arXiv:1702.07666 Ge, w/discrim. C. Amole et al ., arXiv:1702.07666 CDMS w ZEPLIN-III Darkside SCDMS LXe, w/discrim. DEAP LUX XENON 1T LZ <3×10 -48 cm 2 (XENON nT) 3

  4. annihilation cross section �� collider f < σ v > ann ≈ 3 × 10 − 26 cm 3 sec − 1 time � α 2 ≈ � (200GeV) 2 ? direct � Coupling e.g. to light time quarks �� f time ⌅ Indirect ⌅ Z ⇒ G 2 f µ 2 ∼ 10 − 39 cm 2 ⇤ 0 ≈ 2 ⇥

  5. Z-exchange ⌅ excluded SuperCDMS Soudan Low Threshold ⌅ XENON 10 S2 (2013) 10 � 39 CDMS-II Ge Low Threshold (2011) 10 � 3 PICO250-C3F8 CDMSlite Z CoGeNT (2012) 10 � 40 10 � 4 (2013) CDMS Si (2013) SIMPLE (2012) 10 � 41 10 � 5 WIMP � nucleon cross section � cm 2 � COUPP (2012) WIMP � nucleon cross section � pb � DAMA ) 2 1 0 2 ( I I I - N I 10 � 42 CRESST L 10 � 6 CDMS II Ge (2009) P E Z S u Xenon100 (2012) p e EDELWEISS (2011) r C 10 � 43 D 10 � 7 M S S N ) N O 3 L 1 A B 0 n 2 a EU d ( u X o U 0 S L 5 T S e M d 10 � 44 R 10 � 8 i D S C k I r r a N e 3 I p D u F O S C - 0 7 Be 5 C y T 2 C A T E a O OH d T S - C 0 E R I 0 P R N E 3 X B Neutrinos I N A U L 8 B L O 10 � 45 10 � 9 N G S T S 1 M n o D Neutrinos 0 n C 0 e 2 6 r X e G 3 p P u e A S d E i D S k r a D LZ 10 � 46 10 � 10 10 � 47 10 � 11 C AT TERI N G T S s 10 � 48 N o 10 � 12 R E n i r t H E u e N O C B N O S I N D R U T d N E n a c i r e h p s 10 � 49 o 10 � 13 m t A 10 � 50 10 � 14 1 10 100 1000 10 4 WIMP Mass � GeV � c 2 �

  6. annihilation cross section �� collider f < σ v > ann ≈ 3 × 10 − 26 cm 3 sec − 1 time � α 2 � ≈ (200GeV) 2 ? direct � Coupling proportional to time HIGGS MEDIATED mass (e.g. via higgs) �� f time ⌅ Indirect ⌅ h 1 m p g ∼ 1 ⇒ y p ∼ few v ⇤ 0 ∼ 10 − 39 cm 2 × 10 − 6 ∼ 10 − 45 cm 2

  7. Z-exchange ⌅ excluded SuperCDMS Soudan Low Threshold ⌅ XENON 10 S2 (2013) 10 � 39 CDMS-II Ge Low Threshold (2011) 10 � 3 PICO250-C3F8 CDMSlite CoGeNT Z (2012) 10 � 40 10 � 4 (2013) CDMS Si (2013) SIMPLE (2012) 10 � 41 10 � 5 WIMP � nucleon cross section � cm 2 � COUPP (2012) WIMP � nucleon cross section � pb � DAMA ) 2 1 0 2 ( I I I - N I 10 � 42 CRESST L 10 � 6 CDMS II Ge (2009) P HIGGS MEDIATED E Z S u p Xenon100 (2012) e EDELWEISS (2011) r C 10 � 43 D 10 � 7 M S S N ) N O 3 L 1 A B n 0 a 2 EU d ( Higgs exchange ⌅ u X o U 0 S L 5 T S e M d 10 � 44 R 10 � 8 D i S C k I r r e a I N 3 p D F u C O S - 0 5 7 Be C y 2 T C A T E a O OH d C T S - 0 E R I 0 P R N E 3 X B Neutrinos ⌅ I N U A 8 B L L O 10 � 45 10 � 9 N G S T S 1 M n o Neutrinos D 0 n C 0 e r 2 6 X e G 3 p h P u e A S d E S i D k r a D LZ 10 � 46 10 � 10 10 � 47 10 � 11 C AT TERI N G T S s o 10 � 48 N 10 � 12 n R E i r t H E u e N O C B N O S I N D R U T d N E n a c i r e h p s 10 � 49 o 10 � 13 m t A 10 � 50 10 � 14 1 10 100 1000 10 4 WIMP Mass � GeV � c 2 � “This era will answer the question: does the dark matter couple at O(0.1) to the Higgs boson” N. Weiner, CIPANP 2015

  8. The case for dark matter ,*&31)#$,";?(1?$ • We know it interacts co A sam pling of gravitationally available dark matter candidates co It’s • It is “dark” - should not d probably interact with light or electromagnetism WIMPs, right? • Nearly collision less • Slow must be composite must be bosonic m P l ∼ 10 − 20 eV ∼ 100 M � ∼ 10 19 GeV ∼ 100 eV m DM 8

  9. 42 − 10 Low Mass Dark Matter (<10 GeV) LZ sensitivity (1000 live days) LUX (2017) Projected limit (90% CL one-sided) XENON1T (2017) 43 − ] 10 2 1 expected ± σ SI WIMP-nucleon cross section [cm PandaX-II (2017) +2 expected σ 44 − 10 45 − 10 pMSSM11 (MasterCode, 2017) 46 − 10 47 − 10 1 neutrino event NS) 48 − ν Neutrino discovery limit (CE 10 − 49 10 10 100 1000 2 WIMP mass [GeV/c ] 9

  10. �� - �� �� � ���� ������ - ������� σ �� [ �� � ] ���� ������ - ������� σ �� [ �� ] �� - �� �� � �� - �� �� - � �� - �� �� - � NEWS-G �� - �� �� - � �� - �� �� - � Much less CRESST-II �� - �� �� - � constrained! CDMSLite �� - �� �� - � 42 DS-50 − 10 S2-only LZ sensitivity (1000 live days) LUX (2017) �� - �� �� - � Projected limit (90% CL one-sided) XENON1T (2017) 43 − ] 10 2 1 expected ± σ SI WIMP-nucleon cross section [cm PandaX-II (2017) +2 expected σ �� - �� �� - � 44 − 10 Fake neutrino floor �� - �� 45 − 10 ���� ���� ���� � � �� �� pMSSM11 (MasterCode, 2017) 46 − 10 ���� ������ ���� [ ��� / � � ] 47 − 10 1 neutrino event NS) 48 − ν Neutrino discovery limit (CE 10 49 − 10 10 100 1000 2 WIMP mass [GeV/c ] 10

  11. DM Prognosis? DM Prognosis? Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale must be composite must be bosonic m P l ∼ 10 − 20 eV ∼ 100 M � ∼ 10 19 GeV ∼ 100 eV m DM Good news: most discoverable DM candidates are in thermal equilibrium with us in the early universe Why is this good news? 11 Courtesy G. Krnjaic

  12. DM Prognosis? DM Prognosis? Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale must be composite must be bosonic m P l ∼ 10 − 20 eV ∼ 100 M � ∼ 10 19 GeV ∼ 100 eV m DM Good news: most discoverable DM candidates are in thermal equilibrium with us in the early universe Why is this good news? 12 Courtesy G. Krnjaic

  13. Thermal dark matter • “Most discoverable DM candidates are in thermal equilibrium” - G. Krnjaic • If we can detect it, it’s likely that it was in equilibrium (e.g. interacted enough) • Thermal dark matter has minimum annihilation rate (to set relic density) • Doesn’t care about initial conditions (washed out by thermal bath) - makes modeling easier • Limited viable mass range (to a range that is basically within reach) m DM nonthermal nonthermal ∼ 10 − 20 eV ∼ 100 M � m P l ∼ 10 19 GeV < 10 keV < MeV > 100 TeV GeV m Z MeV { too much { too hot Neff / BBN “WIMPs” Light DM 13 Direct Detection (Alan Robinson)

  14. Thermal dark matter m DM nonthermal nonthermal ∼ 10 − 20 eV ∼ 100 M � m P l ∼ 10 19 GeV < 10 keV > 100 TeV < MeV GeV m Z MeV { too much { too hot Neff / BBN Light DM “WIMPs” Direct Detection (Alan Robinson) LZ, LAr, PICO, LHC, etc Wide open Mature >5 GeV program 18 14

  15. Are there actual candidates? • Annihilation cross section needed for the relic abundance annihilation cross section < σ v > ann ≈ 3 × 10 − 26 cm 3 sec − 1 • New weak scale particle has to be heavier than ~a few GeV • Lee and Weinberg, PRL 39 (1977) 165-168 χ f σ v ∼ α 2 m 2 ∼ 10 − 29 cm 3 s − 1 ⇣ m χ ⌘ 2 W, Z χ m 4 GeV Z χ f 15

  16. Are there actual candidates? • Light dark matter needs new forces (although we might already be there in canonical WIMP dark matter anyway) • Asymmetric DM US Cosmic Visions: New Ideas in Dark Matter 2017 : • Secluded DM Community Report • Forbidden DM Yes! • SIMP • ELDER • Freeze in models 1707.04591 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend