to probe the ebl
play

to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: - PowerPoint PPT Presentation

Nijil Mankuzhiyil (INFN, Udine U.) Massimo Persic (INAF+INFN, Trieste) Fabrizio Tavecchio (INAF, Milano) Blazars as beamlights to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: measure n EBL ( z ) at different redshifts


  1. Nijil Mankuzhiyil (INFN, Udine U.) Massimo Persic (INAF+INFN, Trieste) Fabrizio Tavecchio (INAF, Milano) Blazars as beamlights to probe the EBL Problem: EBL, emitted SED: both unknown ! Aim: measure n EBL ( z ) at different redshifts  local normalization, cosmic evolution Tools : homogeneous set @ different redshifts  one same model (parameters) at all z blazars ( e.g., High-Peaked BLs [HBLs] ) Emission physics : simple  one-zone SSC emission  synchrotron + compton, PL electron spectrum

  2. One-zone SSC: model parameters : Tavecchio + 2001 Plasma blob: R , B , δ j ApJ, 554, 725 Electron pop: n 0 , α 1 , α 2 , E br , E min , E max Kino+ 2002

  3. The method ( 1 ) Simultaneous multi- ν obs’s :  optical + X-rays + HE γ -ray + VHE γ -ray Model SED : use SED w/out (EBL-affected) VHE γ -ray data :  χ 2 -minimization  SSC model ( check structure of multi-D parameter space ) T T T T T simulated data T T T

  4. …the method ( 2 ) s i m u l a t e d d a t a Extrapolate model SED into VHE regime  “intrinsic” blazar VHE emission simulated data Observed vs “intrinsic” emission  τ γγ γγ (E,z) Assume (concordance) cosmology  n EBL ( ε , z j ) (parametric: ∑ a nj ε n ) simulated data

  5. Checking the method … locally PKS 2155-304 Aharonian+ 2009 ApJ, 696, L150 z = 0.12 SSC param’s γ min = 1 FERMI γ br1 = 1.4 × 10 4 γ br2 = 2.3 × 10 5 Swift ATOM γ max = 3 × 10 6 HESS α 1 = 1.3 α 2 = 3.2 R XTE α 3 = 4.3 B = 0.018 G cm R = 1.5 × 10 17 δ = 32 EBL de-absorbed … caveat… … assumed electron spectrum is triple -PL …

  6. … our effort data: Aharonian+ 2009 ApJ, 696, L150 SSC parameters from χ 2 minim. n e =150 cm - 3 ATOM γ min = 1 Swift, Fermi γ br = 2.9 × 10 4 RXTE γ max = 8 × 10 5 H.E.S.S. α 1 = 1.8 α 2 = 3.8 B = 0.056 G R = 3.87 × 10 16 cm observed δ = 29.2

  7.  � 

  8. Malkan & Stecker 1998 p r e l i m i n a r y   Stecker &  de Jager 1998 Stecker 1999  z =0.12

  9. Franceschini + 2008   � 1 0 . 0 = z  3 0 0 . 0 = z z =0.12

  10. For EBL photon energies β ( E , ε , φ ) ≡ [1 – 2( m e c 2 ) 2 / E ε (1-cos φ )] 1/2 ε > 2( m e c 2 ) 2 / E (1-cos φ ) Heitler 1960 σ ( E , ε , φ ) σ ( E , ε ) max by ( for head-on collision ) 2.5 E γ , TeV µ m ≈ Optical depth 0 ≤ z ≤ z s ε > 2( m e c 2 ) 2 / [ Ex (1+ z ) 2 ] x ≡ 1-cos φ τ (E γ , z ) = ∫ d l /d z ∫ x /2 ∫ n EBL ( ε ) σ ( 2x E ε /(1+z) 2 ) d ε d x d z Stecker 1971 cosmology n EBL ( ε n , z j ) = ∑ a n,j ε n n EBL ( ε ,z) unknown  parameterize Stecker 1999

  11. Conclusion Cons:  indirect measurement of EBL  method depends on blazar model Pros:  unbiased method  no assumptions on EBL, blazar SED  SSC well tested locally on different emission states Check:  on local (z=0.12) blazar PKS 2155-304  deduced τ ’s within reasonable range Aim:  to probe EBL out to z ≈ 1 with Fermi /LAT + current/upcoming enhanced IACTs ( + x-ray, optical tel’s ) (  long live Fermi to see CTA / AGIS !! ) Need:  simultaneous multi- ν obs’s of several blazars in shells of z  possibly each source seen @ different levels of activity ( to increase statistics )  plan simultaneous obs’s involving IACTs + Fermi + X-rays + optical

  12. Thanks

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend