to our dear friend david clarke
play

to our dear friend : David CLARKE ! .Defence : How to control a - PDF document

End of the Sixties: - ORIGIN OF MODEL BASED PREDICTIVE CONTROL - PETROLEUM INDUSTRY / DEFENCE INDUSTRY INDUSTRIAL APPLICATIONS OF .Refineries : PREDICTIVE FUNCTIONAL CONTROL How to handle constraints on MVs and CVs ? How to control


  1. End of the Sixties: - ORIGIN OF MODEL BASED PREDICTIVE CONTROL - PETROLEUM INDUSTRY / DEFENCE INDUSTRY INDUSTRIAL APPLICATIONS OF .Refineries : PREDICTIVE FUNCTIONAL CONTROL How to handle constraints on MV’s and CV’s ? How to control a multivariable process ? to our dear friend : David CLARKE ! .Defence : How to control a process with a non stationary set point with no lag error (follow-up servo) ? Oxford 09/01/2009 Jacques Richalet jacques. richalet @ wanadoo.fr WHY MPC ? WHY MPC ? PROFIT OPTIMIZATION CONSTRAINTS* Gasoil Crude oil PREDICTION MODEL Residue M.B.P.C / PREDICTIVE CONTROL Tracking servo system CONTROL ON CONSTRAINT Tracking servo system CONTROL ON CONSTRAINT Ko LIMIT ! Viscosity of residue Ok H O t D 1975:Total Normandy Refinery. D11column 30.000 T/day!

  2. ….the past… NO LAG ERROR NO LAG ERROR 1968 : Basic principles of Predictive Control 1973 : 1st version of PFC/ IDCOM 1974 : 1st industrial applications of PFC/IDCOM Steam Generator/ Reactor/ Distillation P ε Τ = 0 ! 1978 : 1st contribution MPC “Automatica “ ( problems..!) X 1980-85 : HIECON with Set Point ( Houston) Target trajectory 1989 : Extension from PFC to PPC: Heading Parametric Predictive Control (control by reactor flow..) t 1998 :1st implementation of an MPC in the native library of a PLC : Modicon. Schneider-Electric.Momentum.Concept EXOTIC APPLICATIONS… FIRST INDUSTRIAL APPLICATIONS OF P.F.C. FIRST INDUSTRIAL APPLICATIONS OF P.F.C. METALLURGICAL INDUSTRIES North : Molde (Norway) DEFENCE � Coating lines aluminium � Mine hunter South : Plaza Huincul ( Patagonia-Argentina) � Thickness control - Roll eccentricity � Ariane 5 attitude control � Mono-multi-stands Rolling mills East : Hokaido ( Japan) � Missile autopilot � Continuous casting (slab) � Laser guided missile (t=62 microsecond…) � Push-ovens West : Mobile ( USA.DEGUSSA) � Gun turrets � Coke furnace � Radar antennas High : Eiffel Tower elevator ! � Hot/cold/Thin rolling mills � Infra Red camera � Steam generators � High speed Infra Red Space : European Space Agency : Mars project bioreactors ( 2029 !) Level, temperature, pressure……; � Missile launch � Camera mount Depth : Mine hunter boat � Radar antennas MISCELLANEOUS (Chem reactors and Speed : Temperature cabin ( TGV : 574.8 km/h W.record ) � Laser mirror distillation excluded) � Tank turret (T. 55) � s ) Fast : Laser guided bomb ( Tsampling : 65 � Mine sweeper auto-pilot � Bioreactor Melissa ESA � Aircraft carrier auto-pilot � Plastic extrusion robot (high speed) Slow : River dam level ( Tsampling : 1 hour) � Temperature control of gas furnace � Temperature control of TGV train carriage Ecology: Diester from colza AUTOMOTIVE � River dam level control (T=1 hour ) � Gear box test bench Animal : Dog food pellet dryer � Powder milk dryer � Dynamic test bench engine � Electric furnace brazing etc…. Plants : Greenhouses � Fuel injection � Idle fuel injection etc… � Clutch antistroke FEATURES � Gear box (tank) � Hybrid car (electric-fuel) …the oldest MBPC… 1968 � Air conditioning A “few” thousand applications in many fields AT WHAT LEVEL DO WE OPERATE ? N Histogram 2 Back to Basics: OFF • Level 0 : Ancillary processes e.g: FRC/ Pid SPEC 1.5 (the valve is the nightmare of control !) • Level 1 : Dynamic control with constraints 1 • Level 2 : Optimization of working conditions • Level 3 : Production planning Sigma 1 0.5 .Level N is operative if level N-1 works well…! Q1 QUALITY . »There are no technical problems, but only technical 0 0 50 100 150 200 250 300 350 400 450 aspects of economic problems … »

  3. N Histogram N Histogram LEVEL 0 / LEVEL 1 LEVEL 0 / LEVEL 1 2 2 Sigma 1 -- Sigma 2 Sigma 1 -- Sigma 2 Sigma 2 Sigma 2 LEVEL 2 OFF OFF Q1 -- Q2 SPEC SPEC 1.5 1.5 1 1 Sigma 1 Sigma 1 0.5 0.5 Q1 QUALITY Q2 Q1 QUALITY 0 0 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 « SQUEEZE AND SHIFT » 4 BASIC PRINCIPLES OF PFC : J. PIAGET 4 BASIC PRINCIPLES OF PFC : J. PIAGET COST FUNCTION N Histogram LEVEL 0 / LEVEL 1 2 Sigma 1 -- Sigma 2 – Operating Image - Internal independant Model Sigma 2 LEVEL 2 OFF Q1 -- Q2 SPEC W2 1.5 – Target – Sub Target – Reference Trajectory DELTA COST (W2-W1) W1 1 – Action – Solver. Functional basis Structured future MV Sigma 1 0.5 – Comparison : – Predicted / Actual – Error compensator Q2 Q1 QUALITY 0 0 50 100 150 200 250 300 350 400 450 • Natural Control : “You would not drive your car using a PID scheme” TARGETED PERFORMANCES STRATEGY… . Control « all » types of processes: time delay, unstable, non-minimum phase, some non-linear . Control of industrial processes : PI(D) ? . Handles all constraints on the MV and on internal but PID cannot solve all control problems, variables of the process CV. but any candidate controller should « look like a PId »: . No lag error on dynamic set points with no integrator Industrial settings: EASY TO UNDERSTAND, TO IMPLEMENT, TO TUNE . Transparent and Cascade Control with transfer of constraints from inner loop to outer controller (« Back Calculation ») .. consistent with floor instrumentists’ habits . True feed-forward so: . Split-range control with different dynamics (reactors!) . Tuning parameters should have a clear, physical interpretation. . Control with 2 cooperative MV’s, e.g., big valve / small . Elementary mathematics. valve . No explicit integrator in the loop. . Extendable to 2 MV/ 2 CV….. . No matrix calculation. . Dual control: total elimination of harmonic disturbances . No quadratic minimization on-line. . Full Robustness analysis: easy trade-off , . No iterative computation on-line. . Immediate tuning / Open technology . Open technology…

  4. 2 T Y P E S O F M O D E L S n Future TRBF Past REFERENCE REFERENCE C(n+H) ε (n+H) TRAJECTORY TRAJECTORY perturbation perturbation Set point Reference Predicted output y ref trajectory y P ∆ + + ε (n) e Process sp e Process sp + + Process output y P sm sm Model Model ∆ M Re-aligned Model Independent Model Model output H H 1 H 2 y M Independent models are selected: Coïncidence horizon . Input /Output models valid for all math. structures MV Manipulated variable MV i . No permanent errors in steady-state modes! ( never mix process variables with model parameters..) Prediction horizon Solver Why structuring the future MV? • Determing all future MVs is of little benefit: • The future MV is projected on a Functional Basis: – many projects lead to the same future behaviour – e.g. Taylor expansion / polynomials • (low-pass process) • Thus, the MV is restricted a priori and not damped • Computation time increases ( PLC !) afterwards…. • Introduction of a damping term on the speed • MV(n+i) = ☞ j. Uj(i) Σ of the MV a priori is difficult to tune ! • U0(i) = 1, U1(i) = i U2(i)= i 2 etc … • Projection on « Eigen » functions of linear • Find the ☞ j such that: dynamic processes insures no lag error on – At a finite number of points, the predicted model output coincides with the desired reference trajectory dynamic set points • (i.e., coincidence points) OPEN LOOP ClOSED LOOP WITH CONSTRAINT 140 140 MV CONSTRAINT 120 120 SETPOINT MV 100 100 80 80 CV h=125 60 − − − − CLTR DESIRED =410 − − − − exp( 20 ).(1 15 ) s s CV = = 60 = = H s ( ) + + + + + + + + + + + + CLTR ACTUAL =424 (1 25 )(1 s 55 )(1 80 ) s s 40 40 dCV 20 20 0 0 -20 0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900 time

  5. REFERENCE TRAJECTORY at ti=20 REFERENCE TRAJECTORY at ti=60 140 140 MV MV 120 120 Setpoint=100 Setpoint=100 100 100 80 80 60 60 REF TRAJ.(green) REF TRAJ.(green) CV PREDICTED(black) CV PREDICTED(black) 40 40 CV PASSED(red) CV PASSED(red) 20 20 tinit=20 tinit=60 0 0 -20 -20 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900 REFERENCE TRAJECTORY at ti=100 REFERENCE TRAJECTORY at ti=150 140 140 MV MV 120 120 Setpoint=100 Setpoint=100 100 100 80 80 60 60 REF TRAJ.(green) REF TRAJ.(green) CV PREDICTED(black) CV PREDICTED(black) tinit=150 40 40 CV PASSED(red) CV PASSED(red) 20 20 tinit=100 0 0 -20 -20 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900 REFERENCE TRAJECTORY at ti=200 REFERENCE TRAJECTORY at ti=300 140 140 MV MV 120 120 Setpoint=100 Setpoint=100 100 100 tinit=300 80 80 tinit=200 60 60 REF TRAJ.(green) REF TRAJ.(green) CV PREDICTED(black) CV PREDICTED(black) 40 40 CV PASSED(red) CV PASSED(red) 20 20 0 0 -20 -20 100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend