tilting theory and cohen macaulay representations
play

Tilting theory and Cohen-Macaulay representations Osamu Iyama - PowerPoint PPT Presentation

Tilting theory and Cohen-Macaulay representations Osamu Iyama Nagoya University Osamu Iyama (Nagoya) Tilting theory and CM representations 1 / 27 Introduction Results in dimension d 2 Examples from d -representation-infinite algebras


  1. Tilting theory and Cohen-Macaulay representations Osamu Iyama Nagoya University Osamu Iyama (Nagoya) Tilting theory and CM representations 1 / 27

  2. Introduction Results in dimension d ≤ 2 Examples from d -representation-infinite algebras Geigle-Lenzing complete intersections Osamu Iyama (Nagoya) Tilting theory and CM representations 2 / 27

  3. T : triangulated category Definition U ∈ T : tilting object ⇐ ⇒ • ∀ i � = 0 Hom T ( U, U [ i ]) = 0 • T = thick U (:=the smallest triangulated subcategory of T closed under direct summands and containing U ) Example: Λ ∈ K b ( proj Λ) is a tilting object Theorem (Rickard, Keller) U ∈ T : tilting object If T satisfies mild conditions (algebraic and idempotent complete), then T ≃ K b ( proj End T ( U )) Osamu Iyama (Nagoya) Tilting theory and CM representations 3 / 27

  4. Definition Λ : Iwanaga-Gorenstein ring ⇐ ⇒ Noetherian ring with inj . dim Λ Λ = inj . dim Λ Λ < ∞ Examples : • Finite dimensional selfinjective algebra over a field k • Commutative Gorenstein local ring • Gorenstein order Definition Λ : Iwanaga-Gorenstein ring • X ∈ mod Λ : (maximal) Cohen-Macaulay ⇐ ⇒ ∀ i > 0 Ext i Λ ( X, Λ) = 0 • CM Λ : category of Cohen-Macaulay Λ -modules • CM Λ : stable category Osamu Iyama (Nagoya) Tilting theory and CM representations 4 / 27

  5. Properties (Happel, Buchweitz, Orlov) • CM Λ is a Frobenius category • CM Λ is an algebraic triangulated category • CM Λ ≃ D b ( mod Λ) / K b ( proj Λ) Question When does CM Λ has a tilting object? Observation Λ : semiperfect CM Λ has a tilting object ⇐ ⇒ CM Λ = 0 Osamu Iyama (Nagoya) Tilting theory and CM representations 5 / 27

  6. G : abelian group Assume Λ is G -graded, i.e. Λ = � g ∈ G Λ g and Λ g Λ h ⊂ Λ g + h • mod G Λ : category of G -graded Λ -modules • CM G Λ := { X ∈ mod G Λ | ∀ i > 0 Ext i Λ ( X, Λ) = 0 } Properties • CM G Λ is a Frobenius category • CM G Λ is an algebraic triangulated category • CM G Λ ≃ D b ( mod G Λ) / K b ( proj G Λ) Question When does CM G Λ has a tilting object? Osamu Iyama (Nagoya) Tilting theory and CM representations 6 / 27

  7. First examples k : field k [ x ] / ( x 2 ) : Z -graded by deg x = 1 Observation • mod Z ( k [ x ] / ( x 2 )) ≃ C b ( mod k ) • mod Z ( k [ x ] / ( x 2 )) ≃ D b ( mod k ) Osamu Iyama (Nagoya) Tilting theory and CM representations 7 / 27

  8. • Λ : finite dimensional k -algebra • T (Λ) = Λ ⊕ D Λ : trivial extension algebra • T (Λ) is a Z -graded symmetric k -algebra with T (Λ) 0 = Λ and T (Λ) 1 = D Λ Theorem (Happel) Assume gl . dim Λ is finite • Λ ∈ mod Z T (Λ) is a tilting object • mod Z T (Λ) ≃ D b ( mod Λ) Application (Tachikawa) Q : Dynkin quiver = ⇒ T ( kQ ) is representation-finite Osamu Iyama (Nagoya) Tilting theory and CM representations 8 / 27

  9. Dimension zero • Λ = � i ≥ 0 Λ i : Z -graded selfinjective k -algebra • For X ∈ mod Z Λ , let X ≥ 0 := � i ≥ 0 X i Theorem (Yamaura) ⇒ mod Z Λ has a tilting object • gl . dim Λ < ∞ ⇐ • In this case � i ≥ 0 Λ( i ) ≥ 0 gives a tilting object Π : preprojective algebra of an n -representation-finite algebra Λ (e.g. kQ for a Dynkin quiver Q ) Corollary (I-Oppermann, Yamaura) mod Z Π ≃ D b ( mod End Λ (Π)) Osamu Iyama (Nagoya) Tilting theory and CM representations 9 / 27

  10. Dimension one • R = � i ≥ 0 R i : commutative Gorenstein ring in dimension one • Assume R 0 = k and has a Gorenstein parameter a ≤ 0 R ( k, R ) ≃ k ( a ) in mod Z R i.e. Ext 1 Theorem (Buchweitz-I-Yamaura) i =1 R ( i ) ≥ 0 is a tilting object in CM Z R ∃ p > 0 s.t. � p Osamu Iyama (Nagoya) Tilting theory and CM representations 10 / 27

  11. Dimension two • Q : extended Dynkin quiver • Π = kQ/ � aa ∗ − a ∗ a | a ∈ Q 1 � : preprojective algebra Π is Z -graded by deg ( a ) = 0 , deg ( a ∗ ) = 1 • e ∈ Q 0 : extended vertex Theorem (Auslander-Reiten, Geigle-Lenzing, Kajiura-Saito-Takahashi) • R := e Π e is a simple singularity in dimension two • R is CM-finite with CM R = add e Π and has an Auslander algebra End R ( e Π) = Π • CM Z R ≃ D b ( kQ/ ( e )) Osamu Iyama (Nagoya) Tilting theory and CM representations 11 / 27

  12. d -representation-infinite algebras (Joint work with Amiot and Reiten) • k : algebraically closed field • Λ : finite dimensional k -algebra of global dimension d L ⊗ Λ − : D b ( mod Λ) → D b ( mod Λ) • ν d := D Λ[ − d ] : derived d -AR translation Definition (Herschend-I-Oppermann) ⇒ ∀ i ≥ 0 , ν − i Λ d -representation-infinite ⇐ d (Λ) ∈ mod Λ Osamu Iyama (Nagoya) Tilting theory and CM representations 12 / 27

  13. • Γ = � i ≥ 0 Γ i : positively graded k -algebra s.t. ∀ i ≥ 0 dim k Γ i < ∞ • Γ e := Γ ⊗ k Γ op Definition (cf. Ginzburg) Γ : n -Calabi-Yau algebra of Gorenstein parameter a ⇒ • Γ ∈ K b ( proj Z Γ e ) ⇐ • RHom Γ e (Γ , Γ e ) ≃ Γ[ − n ]( a ) in D ( Mod Z Γ e ) Theorem (Minamoto-Mori, Keller) ∃ bijection given by Λ �→ Π { d -reresentation-infinite algebras } ≃ { ( d + 1) -Calabi-Yau algebras of Gorenstein parameter 1 } Osamu Iyama (Nagoya) Tilting theory and CM representations 13 / 27

  14. Setting • Λ : d -representation-infinite algebra • Assume Π := Π(Λ) is noetherian • e ∈ Λ : idempotent s.t. dim k (Π / ( e )) < ∞ and e Λ(1 − e ) = 0 Theorem (Amiot-I-Reiten) Let R := e Π e and Λ := Λ / ( e ) • R is Iwanaga-Gorenstein • gl . dim Λ ≤ d • CM Z R has a tilting object e Π • CM Z R ≃ D b ( mod Λ) Osamu Iyama (Nagoya) Tilting theory and CM representations 14 / 27

  15. Definition • M ∈ CM R : d -cluster tilting ⇐ ⇒ add M = { X ∈ CM R | ∀ i ∈ [1 , d − 1] Ext i R ( M, X ) = 0 } = { X ∈ CM R | ∀ i ∈ [1 , d − 1] Ext i R ( X, M ) = 0 } • R : d -CM-finite ⇐ ⇒ ∃ M ∈ CM R : d -cluster tilting C d (Λ) : d -cluster category (Amiot-Guo-Keller) Theorem (Amiot-I-Reiten) • R is d -CM-finite with a d -cluster tilting module e Π • R has a d -Auslander algebra End R ( e Π) = Π • CM R ≃ C d (Λ) Osamu Iyama (Nagoya) Tilting theory and CM representations 15 / 27

  16. � � � � � � � � � � � � � � � � • 2 ≤ d ≤ n • ( a 1 , . . . , a d ) s.t. 0 < a i < n , ( n, a i ) = 1 , � d i =1 a i = n • G := � diag ( ζ a 1 , . . . , ζ a d ) � ⊂ SL d ( k ) • Π := k [ x 1 , . . . , x d ] ∗ G : skew group algebra vertices : { 1 , 2 , . . . , n } ≃ Z /n Z arrows : Q 1 := { x j : i → i + a j | i ∈ Q 0 , 1 ≤ j ≤ d } relations : x j x j ′ = x j ′ x j � 0 ( i ≤ i + a j ) grading : deg ( x j : i → i + a j ) = 1 ( i > i + a j ) x 1 d = n = 4 1 x 2 2 x 3 a 1 = a 2 = a 3 = a 4 = 1 Π x 4 x 3 x 2 x 1 x 4 x 4 x 1 x 2 x 3 x 4 4 3 x 3 x 2 x 1 Osamu Iyama (Nagoya) Tilting theory and CM representations 16 / 27

  17. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Corollary Let R := k [ x 1 , . . . , x d ] G and Λ := Π 0 / ( e d ) • CM Z R ≃ D b ( mod Λ) • CM R ≃ C d (Λ) x 1 x 1 x 1 1 x 2 2 1 x 2 2 1 x 2 2 x 3 x 3 x 3 Π 0 Λ Π x 4 x 4 x 4 x 3 x 2 x 2 x 2 x 1 x 4 x 4 x 1 x 4 x 1 x 4 x 1 x 2 x 3 x 3 x 3 x 4 x 4 4 3 4 3 3 x 3 x 3 x 2 x 2 x 1 x 1 Osamu Iyama (Nagoya) Tilting theory and CM representations 17 / 27

  18. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Corollary Let R := k [ x 1 , . . . , x d ] G and Λ := Π 0 / ( e d ) • CM Z R ≃ D b ( mod Λ) • CM R ≃ C d (Λ) x 1 x 1 x 1 1 x 2 2 1 x 2 2 1 x 2 2 x 3 x 3 x 3 Π 0 Λ Π x 4 x 4 x 4 x 3 x 2 x 2 x 2 x 1 x 4 x 4 x 1 x 4 x 1 x 4 x 1 x 2 x 3 x 3 x 3 x 4 x 4 4 3 4 3 3 x 3 x 3 x 2 x 2 x 1 x 1 Osamu Iyama (Nagoya) Tilting theory and CM representations 17 / 27

  19. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Corollary Let R := k [ x 1 , . . . , x d ] G and Λ := Π 0 / ( e d ) • CM Z R ≃ D b ( mod Λ) • CM R ≃ C d (Λ) x 1 x 1 x 1 1 x 2 2 1 x 2 2 1 x 2 2 x 3 x 3 x 3 Π 0 Λ Π x 4 x 4 x 4 x 3 x 2 x 2 x 2 x 1 x 4 x 4 x 1 x 4 x 1 x 4 x 1 x 2 x 3 x 3 x 3 x 4 x 4 4 3 4 3 3 x 3 x 3 x 2 x 2 x 1 x 1 Osamu Iyama (Nagoya) Tilting theory and CM representations 17 / 27

  20. � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � Corollary Let R := k [ x 1 , . . . , x d ] G and Λ := Π 0 / ( e d ) • CM Z R ≃ D b ( mod Λ) • CM R ≃ C d (Λ) x 1 x 1 x 1 1 x 2 2 1 x 2 2 1 x 2 2 x 3 x 3 x 3 Π 0 Λ Π x 4 x 4 x 4 x 3 x 2 x 2 x 2 x 1 x 4 x 4 x 1 x 4 x 1 x 4 x 1 x 2 x 3 x 3 x 3 x 4 x 4 4 3 4 3 3 x 3 x 3 x 2 x 2 x 1 x 1 Osamu Iyama (Nagoya) Tilting theory and CM representations 17 / 27

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend